Section 1.5: Logic Programming

January 30, 2008

Abstract

In this section we see an application of logic in a language
called “Prolog” (for PROgramming in LOGic). Of particular
interest is the “inference engine” used by the language to prove
theorems (i.e. answer queries). With such a language it is easy
to create an “expert system”. We are also introduced to recur-
sion.

1 PROLOG

Prolog (PROgramming in LOGic) is a declarative (rather than proce-
dural) language, with its own inference rules which allow the user to
pose interesting questions of a database of facts and rules. An SQL
select statement declares the properties of the data to be extracted
from a database, not the procedure for extracting the data. Similarly,
Prolog declares facts and rules, but doesn’t say how to check them. The
questions are actually checked by applications of predicate logic.

While the book uses a PROLOG “pseudo-code”, we will use a
freely obtainable (GNU Lesser General Public License) version of pro-
log (SWI-Prolog) to get a better feeling for prolog. On our course
website is a demo file that I will use today in class. I encourage you to
download SWI-Prolog and experiment!

1.1 Prolog database

This is composed of facts and “rules” (which are also statements,
or facts!). In terms of predicate logic, one creates predicate wffs on the
fly, and establishes which elements of the domain make them true by
passing exhaustively over the domain. For example,

animal(bear)

says that the predicate A(x) representing the predicate wif “x is an
animal” is true for the constant “bear”.
Facts can be binary, as well (and n-ary in general, of course):

eat(bear,fox)

asserts that the predicate wil E(z,y) given by “x eats y” is satisfied
by bears and foxes (to the chagrin of the foxes, and the delight of the
bears).

In addition, rules can be established to check whether logical con-
nectives between facts are true. For example,

prey(z) if eat(y,z) and animal(z)

would tell us if an animal is eaten by something else. In fact, notice
that it is expressed as an implication (begun by “if”): translated in
more standard predicate wff form, it might read

E(y,z) N A(x) — Pr(z).
which Prolog treats as if it is universally quantified:
(Vo) (Vy)[E(y, z) A Alz) — Pr(z)].

(i.e., the compilation of the rule means that it is true for all x and for
all y). Here is an example of a convention in which apparently free
variables are actually quantified; as long as everyone is on board, not
a problem!

So, as promised, the Prolog “rules” are simply more complex pred-
icate wifs, rather than inference rules which it might use to prove the-
orems.

Once the database is created (“compiled”), we can move on to the
important issue of posing interesting questions to the database.

1.2 Prolog queries and “proofs”

Our text lists “is” and “which” as examples of Prolog queries. The
first tests an assertion, whereas the second asks for all instances which
make a statement true.

Example: Practice 28, p. 61/65

o&e_n_/' ,l

Proofs are based on Horn clauses, which are simply implications
expressed as disjunctions using the implication rule:

P—Q < PVQ

The right-hand side above is an example of a Horn clause: a wff com-
posed of predicates or the negations of predicates joined by disjunctions,
where at most one predicate is unnegated.

So all the facts, which were expressed either as existential instanti-
ations or as implications with universal generalization, are expressible
as Horn clauses. A general argument (turned into a Horn clause) looks
like

PAPAN...ANP,—-Q < P/VPV...VP.VQ

The prey(z) rule from above,

E(y,z) N A(z) — Pr(z),
is expressed as a Horn clause as

E(y,z) vV A(z)" V Pr(x).

Prolog uses Horn clauses to prove arguments by resolution (which
is essentially disjunctive syllogism): it matches an unnegated predicate
with a negated predicate in another rule.

For example, consider our rule prey(z), and the request for those
animals which are prey:

which(z: prey(z))

How will Prolog operate? 1t seeks a rule with prey as an unnegated
predicate (i.e. it is the consequent of an implication). It finds

E(y,z) vV A(z)" vV Pr(x).

Prolog then seeks unnegated E(y, x) or A(z) to collapse this argument
using disjunctive syllogism. It finds, for example, that E(bear, fox).
Using universal instantiation, Prolog reckons that perhaps

E(bear, fox)' VvV A(fox) Vv Pr(fox).
and combines the two to reduce the argument to
A(fox)' Vv Pr(fox).

When Prolog checks its list of facts, and encounters A(fozx), it will
resolve with that above to conclude

Pr(fox).

Alternatively, this can also be thought of as modus ponens: A(fox), A(fox) —
Pr(foz) resolves to Pr(foz).

Example: watch the software SWI-Prolog resolve issues associated
with Example 39, p. 64/68.

Example: Practice 29, p. 66/69
skl (r) (£ Entl7) ik ainell)

D~—-.& a~~:-l\[c\‘\

The reason that Prolog can prove theorems in this way is that the
domain is finite: when you create the database, it is only possible to
specify a finite collection of facts, which means that Prolog need only
test a finite set of instances for truth.

1.3 Recursive rules

Prolog offers us our first example of recursion, “... in which the
item being defined is itself part of the definition....” While this is a
very powerful and fascinating idea, it can go horribly awry (in the form
of infinite loops). We’ll see some shortly.

Some rules are recursive in nature: for example, in problem #13,
p. 70/74, we're asked to consider a Prolog database for parts of an
automobile engine. Parts have been classified into big and small, and
a rule exists which determines “part-of”. Now we're to write a rule for
“component-of”. Since a screw may be a part of a filter, which is a
part of the fuel system, we need a rule which can dig down into the
structure of the parts to discover the true “component-ness” of a part
within a part.

Consider the rule defined as two rules, as follows:

component-of(x,y) if part-of(z,y)
component-of(x,y) if part-of(z,z) and component-of(zy)

The first definition gives us a base case: if x is a part of y, then it is
certainly a component of y. On the other hand, the second definition
allows us to determine that, since screw is a part of filter, and filter is
a part of the fuel system, and fuel system is part of the engine, hence
screw is a component of the engine.

Example: watch SWI-Prolog resolve in-food-chain(bear,X) (Example
40, p. 67/70).

Example: Practice 30, p. 68/72

Prolog uses a depth-first strategy for answering questions with recur-
sion (that is, exploring the length of a path before coming back up to
explore an adjacent path), rather than a breadth-first strategy. We'll
explore both these search strategies later on in the course in greater

detail. K\: P[o\ 09
V'ob']l— {ot+ rost

