Section 2.2: Induction

February 6, 2008

Abstract

In this section we investigate a powerful form of proof called
induction. This is useful for demonstrating that a property,
call it P(n), holds for all integers n greater than or equal to 1.

Actually, the “17 above is not essential: any “base integer”
will do (like 0, for example: it really only matters that there be
a “ground floor”, or “anchor”).

1 Induction

Induction is a very beautiful and somewhat subtle method of proof: the
idea is that we want to demonstrate a property associated with natural
numbers (or a subset of the natural numbers). As a typical example,
consider a theorem of the following type (which we might call “Gauss’s
theorem,” hypothesized when he was seven or so):

Prove that the sum of the first » natural mumbers is

An induction proof goes something like this:

o We'll show that it’s true for the first case (usually k& = 1, called
the base case). While the first case is often k& = 1, this isn’t
mandatory: we simply need to be sure that there is a first case
for which the property is true. £ = 0 is another popular choice....

e Then we’ll show that, if the property is true for the k" case, then
it’s true for the (k + 1) case (the inductive step).

e Then we’ll put them together: if it’s true for 1, then it’s true
for 2; if it’s true for 2, then it’s true for 3; .... “to infinity, and
beyond!” Or up the ladder, as our author would say.

Imagine dominoes falling. That’s what it’s like.

The most commonly used form of the principle of induction is ex-
pressed as follows:



First Principle of Mathematical Induction:

1. P(1) is true ) ) L )
2 (VK)[P(k) true — P(k 1 1) true | } — P(n) true for all positive integers n

or, more succinctly,

PO) A (VE)[P(k) — Pk + 1)] — (Vn)P@

where the domain of the interpretation is the natural numbers. This is
just modus ponens applied over and over again. Put modus ponens into
an infinite loop, because we want it to run off to infinity! This might
be the first infinite loop you’ve ever liked!

Vocabulary:
¢ inductive hypothesis: P(k)
e basis step (base case, anchor): establish P(1)
¢ inductive step (implication): P(k) — P(k + 1)

Example: (Practice 7, or “Gauss’s theorem”) Prove that, for

any natural number n, 1 +24+3+... +n = |.|'-|2—I|_
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Example: Exercise 34, p. 106/114: Prove that 271 < n! for
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A second (and seemingly more powerful) form of induction is given by
the Second Principle of Mathematical Induction:

1. P(1) is true
2. (Yk)[P(r) true for all r, — P(n) true for all positive integers n
1<r<k— Plk+1)true] )

This principle is useful when we cannot deduce P(k + 1) from P(k)
(for k alone), but we can deduce P(k+ 1) from all preceeding integers,
beginning at the base case.

Example: Exercise 64/66b, p. 109/116.
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In spite of appearances, these two principles are equivalent; further-
more they are also equivalent to the Principle of Well-Ordering,
which states that every collection of positive integers that contains any
members at all has a smallest member.

Example: Prove that the first principle of induction implies
well-ordering.
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A Couple of Fun Examples:

(a) The prisoner’s last request (finite backwards induction!)

(b) Now that we understand induction, let’s use it to prove an amaz-
ing fact: All horses are the same color.

Proof: By induction, on the number of horses.
Base case: 1 horse. No problem! Same color.

Inductive step: we’ll show that if it is true for any group of N
horses, that all have the same color, then it is true for any group
of N + 1 horses.



Well, given any set of N41 horses, if you exclude the last horse,
you get a set of N horses. By the inductive step these N horses all
have the same color. But by excluding the first horse in the pack
of N+1 horses, you can conclude that the last N horses also have
the same color. Therefore all N+1 horses have the same color.

QED — or have we?
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