Section 8.2: Finite-State Machines

April 21, 2008

Abstract

We model a machine as a set of states, inputs which lead to
a change in state, a clock to synchronize the machine world, and
outputs, which result from a particular state. We use tables and
graphs to describe how the inputs relate to changes in state and
the outputs of each state, then practice creating simple finite-
state machines.

Finite-state machines can be used to recognize input, and we
will look at the kinds of input that can be recognized, as well
as construct the machines that recognize given input. Further-
more, some machines are overly complicated, in that we can
simplify them and get the same operation. We will examine
some ways in which we can “minimize” a finite-state machine.

1 Finite-State Machines

Definition: A finite-state machine M is a structure [S, 1,0, fs, ]
where The machine is initialized to start in state sy, and the machine

Table 1: Elements of a finite-state machine.

e finite set of states of the machine

/ input alphabet (finite set of svmbolz)
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operates deterministically (meaning there is no randomness associated
with its operation given a sequence of inputs).

We assume discrete times, synchronized by a clock, so that

fs(state(t;), input(t;)) = state(tsi1)



and that
fo(state(t;)) = output(t;)

We represent fs and f, by
e state tables (e.g. Table 8.1, p. 545/619)

e state graphs (e.g. Figure 8.1, p. 546/620)

A summary of these elements for Example 16, p. 545/619:

Table 2: Elements of finite-state machine of Example 16, p. 545/619.
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Example: Practice 34, p. 546/620 . (First, create the state taple
from the state graph: what are [S, I, O, f;, f,] in this example?)
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Example: Practice 36, p. 546/620
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Example: Exercise 4, p. 563/637 [l olloD
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2 Construction of a machine: the Binary
Adder

In section 7.2 we saw how one might create a logic network in hard-
ware for the addition of binary numbers. We now consider how this
can be incorporated into a finite-state machine which is analogous (p.
547/621).

We must specify the five elements of a finite-state machine: [S, I, O, fs, f,].
What is the set of states, what the set of inputs, what the set of outputs,
and how are the functions f; and f, defined?

Example: Practice 37, p. 547/621
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Example: Practice 38, p. 548/622

Now let’s try something a little different:

Example: Exercise 15(a), p. 565/638 This is a modification, in
some sense, of the binary adder. First of all, recognize that only one
bit is being stored: the author intends in this problem that the first bit
in the output sequence is the output of state sy, in which the machine
started. We need to “carry” the bit which we will write next time, and
write the current bit. We’'ll solve this in two ways: in a sloppy way first,
and then in a better way - illustrating the need to be able to minimize
a finite-state machine.
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3 Recognition

Definition: Finite-State Machine Recognition A finite-state ma-
chine M with input alphabet I recognizes a subset S of I* (the set of
finite-length strings over the input alphabet I) if M, beginning in state
so and processing an input string «, ends in a final state (a state with
output 1) if and only if a € S.

Example: Practice 40, p. 550/624 o
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Notes:

e Note the emphasis on the word “ends”: we assume that the input
stops, and when the input stops the final output is a 1.

e Note also the “if and only if”: this indicates that, if the output
ends in a 1, then the string « is in S; and if string « is in S, then
the output ends in a 1.

What kinds of input can a finite-state machine recognize?” Regular
expressions. Regular expressions over [ are defined recursively

by
1 the symbol ¢ and the symbol );
2 the symbol i for any 7 € I; and
3 the expressions (AB), (AV B), and (A)* if A and B are regular

expressions.

Kleene’s Theorem assures us that a finite-state machine can recog-
nize a set S of input strings if and only if the set S is a regular set (that
is, a set represented by a regular expression).



Since some very reasonable sets are not regular (e.g. S = {0"1"},
where a" stands for n copies of a), finite-state machines are obviously
not sufficient to understand all of computation.

Examples of regular sets given by regular expressions:
e #20b. The set of all strings beginning with 000: 000(0 Vv 1)*
e #20e. The set of all strings ending in 110: (0 V 1)*110
o #20f. The set of all strings containing 00: (0 V 1)*00(0 Vv 1)*

e #20d. The set of all strings consisting entirely of any number (in-
cluding none) of 01 pairs or consisting entirely of two 1s followed
by any number (including none) of 0s: (01)* v 110*

o #32b. The set of all strings of 0s and 1s having an odd number
of Os: 1*01*(01*01*)*.

Example: Exercise 19/23}6’5, p. 566/639 - recognition and min-
imization motivation A e+
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4 Machine Minimization

4.1 Unreachable States

One obvious way in which a machine can be minimized is if there is an
unreachable state: if so, then that state can certainly be trimmed
from the machine without any consequences (from the standpoint of
output). For example: Table 8.3, p. 552/626; and Figure 8.7, p.
553/627.



Example: Practice 43, p. 553/627
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4.2 Equivalent States

It would be nice if we had some general way of minimizing a machine,
however. It turns out that we can find a minimized machine by using
the idea of equivalent states. The idea is that several redundant states
might operate in such confusing fashion that it appears there’s lots
going on, when there’s not!

In the first step, the unreachable states are remo&d, That’s the easy
part! Then we define

Equivalent States: two states s; and s; of M are equivalent if, for
any a € I'*, f,(si, ) = f,(s;, @) where by the awful notation f,(s, )
we mean the sequence of output which occurs given that we start in
state s and receive input a.

(There is no way that our author should have used notation which seems
to imply that f, is somehow both a function from S — S and a function
from S x I'* — S, except that she’s proving herself a computer scientist
and an object-oriented one at that, and overloading the function f,...).

In order to find equivalent states, we define the notion of k-equivalency:
two states are k-equivalent if the machine matches output on an input
of k symbols to the two states.

1 States having the same output symbol are 0-equivalent.

2 For l-equivalency, we check two 0-equivalent states to see that the
next-states under all input symbols (of length 1) are 0-equivalent.

3 For 2-equivalency, we check l-equivalent states to see that the
next-states under all input symbols (of length 1) are 1-equivalent
- and hence equivalent for strings of length 2, total.
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We iteratively step through equivalencies (from 0 on up): as soon as the
states do not change, from k-equivalency to (k-1)-equivalency, then we
have minimized our machine.

Best to look at an example!

Example: Exercise 41/53, p. 570/644
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The set of states is divided up %nto subsets of theoinitial set which have
for their union the entire set S, and no common intersections. This is
called a partition of the set S. As we progress from O-equivalency on
up, each subset can be divided, but none ever coalesce. There can be
partition refinement (finer partition) only.




