
MAT360 Section Summary: 3.2
Divided Differences

1. Summary

We start with the interpolating polynomial of degree n given in Newton form:

Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + . . . + an(x − x0)(x − x1) · · · (x − xn−1)

where the coefficients ai are to be determined. If all the xi = 0, then we have the Maclaurin
expansion of the polynomial; if all xi = c for some constant c 6= 0, then we have the Taylor
series expansion of Pn about c. In either event, the coefficients will be scaled derivatives at a
single point.

We’re now interested in the case where the xi are different (possibly simply equally spaced
points); the coefficients will still be related to derivative information, but that information
will be distributed across the xi, rather than focused on a point. The key to computing them
will be divided differences.

Divided differences are basically approximations to derivatives, as one can see from Theorem
3.6.

This is a somewhat “classical” subject (old-fashioned?): one used to consult tables to evaluate
functions, whereas today we’ve got computers which have been programmed to do the job
for us. Textbooks used to include lots of tables (e.g. of trigonometric functions), and if
you wanted sin(1.543), you’d look in the table, find the values of sin(1.54) and sin(1.55),
and interpolate! Nowadays, this is rarer, but you may have still had to do such things in a
statistics class, for example, where tables of normal probabilities or t-distribution values are
still used....

2. Definitions

• zeroth divided difference: f [xi] = f(xi)

• first divided difference:

f [xi, xi+1] =
f [xi+1] − f [xi]

xi+1 − xi

• second divided difference:

f [xi, xi+1, xi+2] =
f [xi+1, xi+2] − f [xi, xi+1]

xi+2 − xi

• kth divided difference:

f [xi, xi+1, . . . , xi+k] =
f [xi+1, xi+2, . . . , xi+k] − f [xi, xi+1, . . . , xi+k−1]

xi+k − xi
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• Newton’s interpolatory divided difference formula: using these divided differ-
ences, we can demonstrate that

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1)

is the nth degree interpolating polynomial.

3. Theorems/Formulas Theorem 3.6: Suppose that f ∈ Cn[a, b] and x0, x1, . . . , xn are

distinct numbers in [a, b]. Then ∃ξ ∈ [a, b] /

f [x0, x1, . . . , xk] =
f (n)(ξ)

n!
.

Derivation of the coefficients of the Newton polynomial: Rather than define the
divided differences as above, we could generate a recursive definition for them.

Define the term f [x0, x1, . . . , xn] as the leading coefficient of Pn(x):

Pn(x) = f [x0, x1, . . . , xn](x − x0) · · · (x − xn−1) + Pn−1(x)

Since

Pn(x) =
(xn − x)Pn−1(x) + (x − x0)Qn−1(x)

xn − x0

where Pn−1(x) is the n − 1th interpolating polynomial to x0, . . . , xn−1, and Qn−1(x) is the
n − 1th interpolating polynomial to x1, . . . , xn, we can compute the leading coefficient of Pn

as a function of the leading coefficients of Pn−1 and Qn−1:

leading(Pn(x)) =
−leading(Pn−1) + leading(Qn−1)

xn − x0

Hence,

f [x0, x1, . . . , xn] =
f [x1, x1, . . . , xn] − f [x0, x1, . . . , xn−1]

xn − x0

When you have a recursive definition, you need a basement: it is the leading coefficient of the
constant interpolating function:

f [x0] = f(x0)

Conclusion: the Newton interpolating polynomial is given by

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1)

To get the polynomial’s coefficients, you simply look along the diagonal of the divided differ-
ence table. Computation of the coefficients costs

3
n∑

i=1

i = 3
n(n + 1)
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operations, whereas evaluation involves 4n − 1 operations. While this seems expensive com-
pared to Horner’s method, we generate a succession of estimates (using the 0th through nth
degree polynomials). So there is bang for the buck....
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4. Properties/Tricks/Hints/Etc. This form of the interpolating polynomial is nice because

we can easily increase the degree by adding an additional knot, without much additional work.
We can reuse the interpolating polynomial of previous degree. Furthermore, the knots don’t
have to be added at the end or beginning: this process was independent of the order of the
xi.

By following the table of divided differences up from the function values, we get a look at the
estimated value of the function using higher and higher powered polynomials. We hope that
if the values are settling down, that we’re doing a pretty good job of approximating it (and
that we needn’t proceed to even higher degree). If we’re not settling down, however, we know
that with the Newton formulation, we can do even better.

If you’re at the “left hand side” (near x0) of the table, then it makes sense to make use of the
forward-differences; if you’re at the right of the table, then use the backward-differences. The
only advantage of using one side versus the other is in watching the value of P (x) stabilize
as additional degreed polynomials are used; using either form gives the same value for the
highest degreed approximation. So the authors’ injunction that “The Newton formulas are
not appropriate for approximating f(x) when x lies near the center of the table....” are a little
draconian.... Use them!
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