MAT360 Section Summary: 4.1 (part a)
Numerical Differentiation

1. Summary

In this section we use various schemes for approximating derivatives, using discrete points,
starting from the first-order divided difference approximation

[) ~ f(zo + hl)z — f(wo)

This is a two-point formula, for the approximation, relying on points xo and xg + h. If we
can use two points, can’t we use three to get even better approximations? Of course we can!

2. Definitions

e Given

f/(xo) ~ f(xO + h})Z - f(-TO)

forward-difference formula: h > 0; backward-difference formula: h < 0.

e centered-difference formula: works out to the average of the forward- and backward-

difference formulas:
f(xo+h) — f(vg —h)
2h

[/ (o) =~

3. Theorems/Formulas

But what error are we making in that approximation? Well, if f is twice differentiable, then
this approximation will fall out of the Lagrange interpolating polynomial and its error term.
Consider two points zy and x;, and the linear Lagrange interpolating polynomial. Define
h = x1 — xg. Then

(x — zo)(x — 27)

fx) = Poa(a) + f"(&(x)) o

Then

f(z) = P(;’l(x) + %f”(f(x)) (x — $o)2(!x — 1) +f(E()) d l(x —xo)(x — xl)]

dr 2!

The Newton form of the interpolating polynomial (which is equivalent to the Lagrange inter-
polating polynomial, remember!) gives us the derivative as the divided difference, and then
we have to use the product rule to produce the mess with the rest:

h) — d _ _ B o
f/(x) — f(IO + 2 f(xo) + %f”(é’(x)) (I ZL’o)Q('ZL’ ZL’l) 4 f”(&(x))%
When z = zy we get some nice simplification: we have that
f/($0> _ f(-TO + h]z — f(l’o) B f”(é’(xo))g
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so, in general, the forward (or backward) difference approximations have errors that satisfy

/ f(xo+h) — f(xo) M|h|
|f'(w0) — 3 | < 5

where M > 0 is a bound on the size of the second derivative on the interval [z, z4].

. Properties/Tricks/Hints/Etc.

We can get the error bound for the centered-difference formula using Taylor series quite easily,
provided f is thrice-differentiable:

2

o+ K) = Flan) + f (o) + "o (o) + o P ro)

and 2 3
(o = h) = f(ao) — (@) + 1" (w0) = 5£"(0(w0))
Then the centered-difference formula yields
h) — —h h?
f(xo + )th($0 ) _ f/(mo) + - 3'(fm(§($0)) + f///(d)(m )))

and, provided f” is continuous, we can find a 1)(xg) € [xg — h, xo + h] such that

(f"(€(x0)) + f"(9(20)))
2

f"(W(x0)) =

so that
f(zo +h) = f(xo — h) h?

f/(ﬂ?o) = 9% - f(3)(¢(3?0))€

Marvellous! Don’t you love that Taylor formula?
Round-off versus Step-size — Fight of the Century!

Even though we pretend that we are calculating “real” values, we’re making errors (truncation,
round-off). Consider the case of the forward-difference formula. In this case, we compute with
erTors:

f(xo) = f(x0) — (o)

and

f(:[‘() + h) = f(![’() + h) - 6(1‘0 + h)
where e represents round-off error, and h > 0.
Now the absolute error E in our derivative calculation will be made up of two parts:

f/(xo) _ f(zoth)—f(zo)

E= 7

F(xo) — f(xo+h)*6(xo+hh)*f(xo)+€(xo)

f(wo) = f/(wo) + 2 1"(6) + M
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SO

o @f,,(€)+e(xo+h})l—e(xo) < ]\/2[h+%

2
where M > 0 is a bound on the second derivative on the interval of interest, and ¢ > 0 is a
bound on the size of a truncation or round-off error.

The upshot: we can’t just make h as small as we like, and expect approximations to get better
and better: round-off error will ultimately kill us. We need to balance the round-off against
small A — and we can even guess what value of h is appropriate, given a particular function
(and its second derivative), and the size of round-off errors on your particular machine.

Example: #24, p. 178



