
MAT360 Section Summary: 4.1 (part a)
Numerical Differentiation

1. Summary

In this section we use various schemes for approximating derivatives, using discrete points,
starting from the first-order divided difference approximation

f ′(x0) ≈
f(x0 + h) − f(x0)

h

This is a two-point formula, for the approximation, relying on points x0 and x0 + h. If we
can use two points, can’t we use three to get even better approximations? Of course we can!

2. Definitions

• Given

f ′(x0) ≈
f(x0 + h) − f(x0)

h

forward-difference formula: h > 0; backward-difference formula: h < 0.

• centered-difference formula: works out to the average of the forward- and backward-
difference formulas:

f ′(x0) ≈
f(x0 + h) − f(x0 − h)

2h

3. Theorems/Formulas

But what error are we making in that approximation? Well, if f is twice differentiable, then
this approximation will fall out of the Lagrange interpolating polynomial and its error term.
Consider two points x0 and x1, and the linear Lagrange interpolating polynomial. Define
h = x1 − x0. Then

f(x) = P0,1(x) + f ′′(ξ(x))
(x− x0)(x− x1)

2!
Then

f ′(x) = P ′

0,1(x) +
d

dx
f ′′(ξ(x))

(x− x0)(x− x1)

2!
+ f ′′(ξ(x))

d

dx

[

(x− x0)(x− x1)

2!

]

The Newton form of the interpolating polynomial (which is equivalent to the Lagrange inter-
polating polynomial, remember!) gives us the derivative as the divided difference, and then
we have to use the product rule to produce the mess with the rest:

f ′(x) =
f(x0 + h) − f(x0)

h
+

d

dx
f ′′(ξ(x))

(x− x0)(x− x1)

2!
+ f ′′(ξ(x))

2(x− x0) − h

2

When x = x0 we get some nice simplification: we have that

f ′(x0) =
f(x0 + h) − f(x0)

h
− f ′′(ξ(x0))

h

2

1



so, in general, the forward (or backward) difference approximations have errors that satisfy

|f ′(x0) −
f(x0 + h) − f(x0)

h
| ≤

M |h|

2

where M > 0 is a bound on the size of the second derivative on the interval [x0, x1].

4. Properties/Tricks/Hints/Etc.

We can get the error bound for the centered-difference formula using Taylor series quite easily,
provided f is thrice-differentiable:

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

3!
f ′′′(ξ(x0))

and

f(x0 − h) = f(x0) − hf ′(x0) +
h2

2
f ′′(x0) −

h3

3!
f ′′′(φ(x0))

Then the centered-difference formula yields

f(x0 + h) − f(x0 − h)

2h
= f ′(x0) +

h2

2 · 3!
(f ′′′(ξ(x0)) + f ′′′(φ(x0)))

and, provided f ′′′ is continuous, we can find a ψ(x0) ∈ [x0 − h, x0 + h] such that

f ′′′(ψ(x0)) =
(f ′′′(ξ(x0)) + f ′′′(φ(x0)))

2

so that

f ′(x0) =
f(x0 + h) − f(x0 − h)

2h
− f (3)(ψ(x0))

h2

6
Marvellous! Don’t you love that Taylor formula?

Round-off versus Step-size – Fight of the Century!

Even though we pretend that we are calculating “real” values, we’re making errors (truncation,
round-off). Consider the case of the forward-difference formula. In this case, we compute with
errors:

f̃(x0) = f(x0) − e(x0)

and
f̃(x0 + h) = f(x0 + h) − e(x0 + h)

where e represents round-off error, and h > 0.

Now the absolute error E in our derivative calculation will be made up of two parts:

E =

∣

∣

∣

∣

f ′(x0) −
f̃(x0+h)−f̃(x0)

h

∣

∣

∣

∣

=
∣

∣

∣f ′(x0) −
f(x0+h)−e(x0+h)−f(x0)+e(x0)

h

∣

∣

∣

=
∣

∣

∣f ′(x0) − f ′(x0) + h
2
f ′′(ξ) + e(x0+h)−e(x0)

h

∣

∣

∣

2



so

E =

∣

∣

∣

∣

∣

h

2
f ′′(ξ) +

e(x0 + h) − e(x0)

h

∣

∣

∣

∣

∣

≤
Mh

2
+

2ε

h

where M > 0 is a bound on the second derivative on the interval of interest, and ε > 0 is a
bound on the size of a truncation or round-off error.

The upshot: we can’t just make h as small as we like, and expect approximations to get better
and better: round-off error will ultimately kill us. We need to balance the round-off against
small h – and we can even guess what value of h is appropriate, given a particular function
(and its second derivative), and the size of round-off errors on your particular machine.

Example: #24, p. 178
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