MAT360 Exam 2 (Fall 2009): Part II, 2.6, 3.1-3.4, 4.1

Name:

Directions: This is the numerical complement to your in-class exam. You are to work alone. For the most part, you will be verifying your answers from the in-class exam in this second part, which will be worth 1/3 of your grade for this exam. You may do Problem 1 on this page. As for the others, you should provide a neat printout of the responses to each, each on separate pages. I would like these returned by Friday's class, 11/20.

Problem 1. (10 pts) The **rest of the exam** concerns the following data, generated by the function $f(x) = -x \cos(\pi x)$: Use the best schemes available in Section 4.1 to estimate the derivative values

x	f(x)	f'(x)
$x_0 = 0$	0	
$x_1 = 1$	1	
$x_2 = 2$	-2	
$x_3 = 3$	3	
$x_4 = 4$	-4	

at the knots in the table. Show your work below, and put the value (rounded to the fourth decimal place) in the table above.

Problem 2. (20 pts)

- a. Find the interpolating quartic $p_4(x)$ to the data in the table. Bound the error you would expect at an arbitrary $x \in (x0, x4)$, assuming that f(x) generated the data. Plot the actual error against the bound.
- b. Find the Hermite cubic spline for this data. Bound the error at an arbitrary $x \in (x0, x4)$ and plot the actual error against the bound.

Problem 3. (10 pts) **Use linear algebra** to find the **clamped** cubic spline to fit the data. Write and solve the system of equations given that each of your splines is written in the form

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

with i = 0, 1, 2, 3. Plot the spline and f over the interval [x0, x4].

Problem 4. (10 pts) Use Muller's method to find a root of the function $f(x) = -x \cos(\pi x)$, starting from the estimates at x_1 , x_2 , and x_3 (from the table).

In choosing between the two roots of the quadratic, take the root closest to the current best estimate. As a stopping criterion take both $|r_n - r| < 10^{-6}$ and $f(r_n) < 10^{-6}$.