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curriculum—the Taylor series—and teagiu how to do new tricks with it that

Newton, Euler and their successors do not seem to have discovered. Below, we use
this standard tool of introductory-level calculus to derive very accurate closed-form
approximations t@. The expressions we derive here and in a companion @per [
appear to be new, even though approximatioreswere first discovered in the 1600’s
[3, pp. 26-27]. Using our technique, you and your students can—uwith a little
perseverance—be able to derive and prove for yourselves entirely new and highly
accurate methods of calculatiag

An old stand-by of college calculus textbooksy. 558;4, p. 743] is the calculation of
evialim,__(1+ )"

I n this paper we dare to take one of the oldest dogs in the college calculus

Classical: (1 + %)X ~ e (2)

For example, inserting = 1000 into (1) we get 2.71692 39322, whietatcurate to

two decimal places.

Elsewhere in most college calculus textbooks [&,0p, 654;4, p. 711]eis obtained
X2 X3

directly from the Maclaurin series fe¥, whiche$= 1 + x + 2 + 3 +.... For

x = 1this equals

1+1+l+i+l+---+i~e
20 3 4 N! '
Although it is almost never done in calculus textbooks, it is a relatively simple task to
express the Classical approximation as a series. We can then evaluate the error of (1)

analytically rather than by trial-and-error.



First, express Ifl + x) as a Mataurin seies,cornvergent for -1 < x < 1
[1, p. 635]:

In(1+x)=X_X_2+X_3_X_4+X_5_X_6+X_7_m
2 3 4 5 6 7

Next, replacex with % and nultiply the esult ly x:
xIn(l + %) = In<1 + )—1(>X
=1—l+———+——i+i—--- = p(x), x = 1.
Thus

1 X
(1 + _> =g =g@g.gx-1
X

[ X) — 1)2 X) — 1)3
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or
<1+1>X=e_1—i+ 11 7 2447 959 | 238043 _ }
2X  24x2  16x3  5760x* 2304x5 580608x¢ 7|

x=1 (2)

The seies in (2) shws the eror in the Classicalgproximation. The gproximation is
not very accuste for smallx because it is oglfirst-oder accuste—thd is, the seies in
(2) possesses a tithd is piopottional to1l/x. This tem is relaively large for smallx.
Since the sées for the Classical@proximation indicaes where itsAchilles’ heel is in
terms of accuagy, we can use this infmaion to cede nev algebraic expressions thia
improve upon its accacy.

The pah to obtaining n& and moe accuate gproximations toe using seles inolves
repeded “bootstrapping” i.e., combining two good gproximations to gt a better one
We first obtain an pproximation of e accuete to second aler, tha is, of the

form e[l + O(%)]
X
We can deve a second-der gproximation to e by summing the tw seres for
1 1
xIn(l + —) and In(l + —):
X 2X
1 1 1 1 1
xIn(l—i—;) + In<1+2—X>—<1—5(+¥—R+ )
+G_i+i__>
2x 8% 243 7
5 5

=14 s — e+ = ().
Lt oae ~ 2ae ax)



Thus

X

(1 i 1) (1 ; i) e g0
X 2X
or
X

ACM: (1 + 1) (1 + i)
X 2X

5 5 , 1187 587 , 117209 _ ]X>1 3)
242 243 ' 5760x* 2880x° 580608 |77 T

We call this thé'Acceleted Classical Methqgdor ACM. Here and lger, the aconym
refers to the tosed-brm expression on the left-hand side of the dgqra

=e[1+

The seies in (3) shws tha ACM is moe accuate than the Classicapproximation,
because the peer ofx in the frst tem is lager; theefore the sum of the ters in the
bradkets on theight-hand side of (3) islaser to 1 ér allx > 1 than in the case of (2).
However, every mah dassoom has it§Doubting Thomas”who mnust test the thegrfor
himself or heself. Fortunaely, comparson of these @roximations is easy with a
calculdgor. ACM is equal to the Classicgbproximation multiplied by (1 + 2X)
Therefore, for x = 1000 ACM is equal to 2.71692 393221.0005= 2.71828 23942,
which is e accugte tosix decimal placesThe calculéor confrms the calculusACM is
superor to the Classicalgproximation!

(ACM was orginally deiived ky numeically examining the elaionship betveen the
Classical pproximation and another me method SeeAppendixA for this altenative
derivation, which indudes aditional mderial of use in intoductoy calculus cowses.)

Another second-oleraccuete goproximation to e results vinen we adl the sees for
X In(l + ) to its“mirror image” with x replaced ly —x:
1 1 1 1 1

—xln(1—1>—1+i+ +—+—+—+—+
X 2x 3 4 bx4 7x8

The%( terms cancel in this sumrtian, as do all the adipowvered tems inx. Dividing
the sum lg 2 and gponentiding yields the'Mir ror Image Method' or MIM:

X+ 1\3 1 23 1223
x—1> [1+ +9Ox4+5670x5+"']’x>1' (4)

See P] for moe discussion of this method and itsmeious etensions.

MIM: (

Now tha we hare two second-ateraccuete methodsdr goproximating e, we can
combine them to ede a thid-orderaccugte gproximation by summing the ses

for ACM with — 8 X the seies for MIM, and then naltiplying this sum g 3 3
The esult is

ACMMIM: (x + 1)%(x — 1)5x<2x - 1)

XX+1

5 19 77 137
- e[l Ve + 120 1808 + 10088 }, X > 1. (5)




In Figure 1,we present a visual compaon of ACM, MIM, andACMMIM with the
Classical pproximation. [We emphasiz for darity that theleft-hand sides of (3)4),
and (5) ae used in these calctilans; the ight-hand sides of these edoas ae simpy
the anaftical madinery tha guided the @dion of the ¢osed-brm expressions.JThe
figure demonsates tha all three of these e methods signitantly improve upon the
Classic tosed-brm expression.
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Figure 1. A comparson of the n& gpproximationsACM, MIM, andACMMIM
versus the Classicaparoximation toefor 1 < x < 10.

To summaize, our “bootstrapping” approad for deiving highly accuete dosed-brm
approximations toe is composed of tlee stps:

St 1: Take the sdes for two (or moe) algebraic expressions and adthem tgether in
sud a way tha the lovest-paver tem in x in the sum of the sms cancels out.

Step 2: Multiply both sides of this sum—the sum of theehlgic expressions on the
left-hand sidethe sum of their sexs on theight-hand side—¥ a constantThis
coeficient (eg., 8/3 in ACMMIM) is dictated by wha you need to miltiply the ight-
hand side with so thats constant ten is exactly 1. Why do this stp? Because in
Step 3,you will exponentide both sides of the edi@n. If the constant tem is 1,then
in Step 3 you will obtaing! +smaltemsinx < @ and thd's wha we're after!

St 3: Exponentige both sides toeg the nal result. The left-hand sideiges you a
closed-brm algebraic expression thhis a \ery accuete gproximation toe, and the
right-hand side iges Yyou a calculus-based quaitétion of hov good this
approximation is.

We beliee tha mary—one would hope most—colfge calculus students canagp these
simple manipulfions. Futhemore, approximations nuch moie accuate than

ACMMIM can be obtained tlough this aproad. For example in Appendix B ve cite
without defvation several nev goproximations toe obtaindle via the aproad outlined



in this paer In [2], we discuss he more eotic variants of MIM can lead to
exceptionally accuste gpproximations.

In condusion, how often ae you &le to teab a 19908-vintage reseach result in
introductoy calculus?2NVe encouage teabers to pesent ouresults in the lassoom
when you discuss the compound-irget brmula, or when you introduceTaylor seres.
Better still,our work provides an oppdunity for you to dallenge your students to think
about hav their calcultors and computsr‘know” constants suctase. By assigning
homevork problems based on this par, you can lead gur students to diseer for
themseles nev gpproximations toe sud asACM, MIM, those inAppendix B . . or
perhas some w haven't discorered yet!
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APPENDIX A
Numerical Derivation of ACM

ACM was disceered by attempting to ind a corelaion between a n& second-aler
approximation toe, (B1) in Appendix B and the Classicalpgroximation (1). Letting
f(x) = (B1) andg(x) = Classicalthe frst st@ is to amine their atio:

. ft)

g(x)
1 1.50000 00000
10 1.04845 38021
100 1.00498 34578

1000 1.00049 98335

[Note: sincef(x) at x = 1 is of the indeteminae form g the evaludion of the gtio

0 at x = 1is an &cellent oppaiunity to explore the utility of LlHopital’s Rule ly

9(x)
compaing the anajtic and umeical results.]
After subtacting 1 fom this esult br eat geneeted \alue ofx it becomes lear tha

the remainder of this opation timesx approadies a alue of 0.5 ér lamge x:



X x[m— 1}

g(x)
1 0.50000 00000
10 0.48453 80210
100 0.49834 57838

1000 0.49983 34583

This sugjests tha

Jlngox[gl;((ix))— 1] =%. (A1)

[A formal proof of (Al) is another god homwork exercise!]

A new gpproximation with the same der of accuaicy as (B1) can be obtaineg b
substitutingh(x) for f(x) in this expression and solving

h(x) ] 1
00 2 (A2
for h(x). Doing so yields thelosed-brm expression ér ACM.

APPENDIX B
Other Series-BasedApproximations to e

The gproximations belov can be deved using the same bootgiping gproad
outlined in the tet. Their dervations ae left as gercises or the eader

(x + 1)(1 + %)X — (x — 1)(1 - %)ﬂ( (second ater) (B1)
2XX
>~ Dx — D 1 (second ater) (B2)
(x + 1)x*+1 XX XX .
T X DX =11 2x— 11 (third order) (B3)

These pproximations can be combined with otlsebund in the tet to crede the
following goproximations toe:

%ACM + g(BZ) (third order) (B4)
%(Bl) - %MIM (fourth order) (B5)
1—70(83) - 2(84) (fourth order) (B6)

656 581 :
f(BG) - %(BS) (fifth order) (B7)



