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I n this paper we dare to take one of the oldest dogs in the college calculus
curriculum—the Taylor series—and teach youhow to do new tricks with it that
Newton, Euler and their successors do not seem to have discovered. Below, we use

this standard tool of introductory-level calculus to derive very accurate closed-form
approximations to e. The expressions we derive here and in a companion paper [2]
appear to be new, even though approximations to e were first discovered in the 1600’s
[3, pp. 26-27]. Using our technique, you and your students can—with a little
perseverance—be able to derive and prove for yourselves entirely new and highly
accurate methods of calculating e. 

An old stand-by of college calculus textbooks [1, p. 558; 4, p. 743] is the calculation of 

e via 

(1)

For example, inserting into (1) we get 2.71692 39322, which is e accurate to
two decimal places.

Elsewhere in most college calculus textbooks [e.g.,1, p. 654; 4, p. 711] e is obtained 

directly from the Maclaurin series for which is For 

this equals

Although it is almost never done in calculus textbooks, it is a relatively simple task to
express the Classical approximation as a series. We can then evaluate the error of (1)
analytically rather than by trial-and-error.
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First, express ln as a Maclaurin series,convergent for 
[1, p. 635]:

Next, replace x with and multiply the result by x:

Thus

or

(2)

The series in (2) shows the error in the Classical approximation. The approximation is
not very accurate for small x because it is only first-order accurate—that is, the series in
(2) possesses a term that is proportional to This term is relatively large for small x.
Since the series for the Classical approximation indicates where its Achilles’ heel is in
terms of accuracy, we can use this information to create new algebraic expressions that
improve upon its accuracy.

The path to obtaining new and more accurate approximations to e using series involves
repeated “bootstrapping,” i.e., combining two good approximations to get a better one.
We first obtain an approximation of e accurate to second order, that is, of the 

form 

We can derive a second-order approximation to e by summing the two series for
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Thus

or

ACM:

(3)

We call this the “Accelerated Classical Method,” or ACM. Here and later, the acronym
refers to the closed-form expression on the left-hand side of the equation.

The series in (3) shows that ACM is more accurate than the Classical approximation,
because the power of x in the first term is larger; therefore the sum of the terms in the
brackets on the right-hand side of (3) is closer to 1 for all than in the case of (2).
However, every math classroom has its “Doubting Thomas”who must test the theory for
himself or herself. Fortunately, comparison of these approximations is easy with a
calculator. ACM is equal to the Classical approximation multiplied by 
Therefore, for ACM is equal to 2.71692 393221.0005 2.71828 23942,
which is e accurate to six decimal places. The calculator confirms the calculus; ACM is
superior to the Classical approximation!

(ACM was originally derived by numerically examining the relationship between the
Classical approximation and another new method. See Appendix A for this alternative
derivation, which includes additional material of use in introductory calculus courses.)

Another second-order-accurate approximation to e results when we add the series for
to its “mir ror image” with x replaced by

The terms cancel in this summation, as do all the odd-powered terms in x. Dividing
the sum by 2 and exponentiating yields the “Mir ror Image Method,” or MIM:

(4)

See [2] for more discussion of this method and its numerous extensions.

Now that we have two second-order-accurate methods for approximating e, we can
combine them to create a third-order-accurate approximation by summing the series

for ACM with the series for MIM, and then multiplying this sum by 

The result is
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In Figure 1,we present a visual comparison of ACM, MIM, and ACMMIM with the
Classical approximation. [We emphasize for clarity that the left-hand sides of (3),(4),
and (5) are used in these calculations; the right-hand sides of these equations are simply
the analytical machinery that guided the creation of the closed-form expressions.] The
figure demonstrates that all three of these new methods significantly improve upon the
Classic closed-form expression.

Figure 1. A comparison of the new approximations ACM, MIM, and ACMMIM 
versus the Classical approximation to e for 

To summarize, our “bootstrapping” approach for deriving highly accurate closed-form
approximations to e is composed of three steps:

Step 1: Take the series for two (or more) algebraic expressions and add them together in
such a way that the lowest-power term in x in the sum of the series cancels out.

Step 2: Multiply both sides of this sum—the sum of the algebraic expressions on the
left-hand side, the sum of their series on the right-hand side—by a constant. This
coefficient (e.g., in ACMMIM) is dictated by what you need to multiply the right-
hand side with so that its constant term is exactly 1. Why do this step? Because in 
Step 3,you will exponentiate both sides of the equation. If the constant term is 1,then
in Step 3 you will obtain and that’s what we’re after!

Step 3: Exponentiate both sides to get the final result. The left-hand side gives you a
closed-form algebraic expression that is a very accurate approximation to e, and the
right-hand side gives you a calculus-based quantification of how good this
approximation is.

We believe that many—one would hope most—college calculus students can grasp these
simple manipulations. Furthermore, approximations much more accurate than
ACMMIM can be obtained through this approach. For example, in Appendix B we cite
without derivation several new approximations to e obtainable via the approach outlined

e11small terms in x < e,

8y3
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in this paper. In [2], we discuss how more exotic variants of MIM can lead to
exceptionally accurate approximations.

In conclusion,how often are you able to teach a 1990’s-vintage research result in
introductory calculus? We encourage teachers to present our results in the classroom
when you discuss the compound-interest formula,or when you introduce Taylor series.
Better still,our work provides an opportunity for you to challenge your students to think
about how their calculators and computers “know” constants such as e. By assigning
homework problems based on this paper, you can lead your students to discover for
themselves new approximations to e such as ACM, MIM, those in Appendix B. . . or
perhaps some we haven’t discovered yet!
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Friday” staff for bringing the authors together in this collaboration.
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APPENDIX A

Numerical Derivation of ACM

ACM was discovered by attempting to find a correlation between a new second-order
approximation to e, (B1) in Appendix B, and the Classical approximation (1). Letting

and Classical,the first step is to examine their ratio:

x

1 1.50000 00000
10 1.04845 38021
100 1.00498 34578
1000 1.00049 98335

[Note: since at is of the indeterminate form the evaluation of the ratio 

at is an excellent opportunity to explore the utility of L’Hopital’s Rule by

comparing the analytic and numerical results.]

After subtracting 1 from this result for each generated value of x it becomes clear that

the remainder of this operation times x approaches a value of 0.5 for large x:
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x

1 0.50000 00000
10 0.48453 80210
100 0.49834 57838
1000 0.49983 34583

This suggests that

(A1)

[A f ormal proof of (A1) is another good homework exercise!]

A new approximation with the same order of accuracy as (B1) can be obtained by
substituting for in this expression and solving

(A2)

for Doing so yields the closed-form expression for ACM.

APPENDIX B

Other Series-Based Approximations to e

The approximations below can be derived using the same bootstrapping approach
outlined in the text. Their derivations are left as exercises for the reader.

(second order) (B1)

(second order) (B2)

(third order) (B3)

These approximations can be combined with others found in the text to create the
following approximations to e:

(third order) (B4)

(fourth order) (B5)

(fourth order) (B6)

(fifth order) (B7)
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