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2.7182818284590452353602874713526
62497757247093699959574966967627
72407663035354759457138217852516
64274274663919320030599218174135
96629043572900334295260595630738
13232862794349076323382988075319
52510190115738341879307021540891
49934884167509244761460668082264
80016847741185374234544243710753
90777449920695517027618386062613
31384583000752044933826560297606
73711320070932870912744374704723
06969772093101416928368190255151
08657463772111252389784425056953
69677078544996996794686445490598
79316368892300987931277361782154
24999229576351482208269895193668
03318252886939849646510582093923
98294887933203625094431173012381
97068416140397019837679320683282
37646480429531180232878250981945
58153017567173613320698112509961
81881593041690351598888519345807
27386673858942287922849989208680
58257492796104841984443634632449
68487560233624827041978623209002

r = ke bθ
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The number e pops up whenever we examine continuous 
rates of growth (or decay) that are inherently tied to the 
amount or size of the thing that we are measuring.

For example, it is used in the calculation of:

Compound interest
Population growth
Radioactive decay
Bacterial growth
Atmospheric concentrations of CO2

y = e x
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Its presence can also be seen in the cross-section of the 
chambered nautilus shell which traces out the form of a 
logarithmic spiral.

Here, the size of each successive chamber is proportional to 
the one preceding it.
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Bankers in Europe at the turn of the 17th century knew that 
the interest they charged grew faster when it was 
compounded more frequently.

A = total amount
P = principal
r = interest rate per year

Simple interest:  A = P (1+ r)
Using simple interest, a loan of $1000 at 20% interest per 
year will require a repayment of

$1000 (1+      ) = $1200

at the end of one year.

HistoryHistoryHistory

2 0
1 0 0



If the same loan is compounded twice, we have

$1000 (1+      ) = $1100 (end of first six months)

$1100 (1+      ) = $1210 (end of second six months)

resulting in $1210 due at the end of one year.  This $10 
more than the amount due with simple interest.

Mathematically, this is equivalent to saying

$1000 (1+      ) (1+      ) or,

$1000 (1+      )2 = $1210 .

DerivationDerivationDerivation
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Compounding the same interest four times a year results in 
a year-end payment of

$1000 (1+      )4 = $1215.51 .

In general, if

t = number of times interest is compounded per year

then
A = P (1 +     )t

.

A natural question is: What is the most money that can be 
earned at 100% interest?  To find out, we set  r =1 and see 
what happens as t increases.

DerivationDerivationDerivation

r
t
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DerivationDerivationDerivation

2.7182801,000,000

2.71828210,000,000

2.718268100,000

2.71814610,000

2.7169241,000

2.704814100

2.59374210

21

(1+     )t *t

* 6 decimal place accuracy

1
t



Value of eValue of Value of ee

What we find is that as t increases, the output of the 
expression seems to approach a fixed value.

Thus, the payment due at the end of one year on our $1000 
loan at 100% interest would be

$1000 (2.71828) = $2,718.28

regardless of whether it is compounded every 32 seconds or 
every 3.2 seconds.



Value of eValue of Value of ee

Like its better known cousin π, e has special properties:

It is irrational; it cannot be expressed as a ratio of two      
integers. The digits to the right of the decimal point
continue forever, never falling into a repetitive pattern.

It is transcendental; using integer coefficients, it is not the 
solution to any equation of the form

( )1 2.718281828459045...lim 1
x

x xe
→∞

= ≈+

What we have arrived at is the limit definition of e:

1 2 .0...n n na b c dx x x− − =+ + +



Direct MethodDirect MethodDirect Method

It was Isaac Newton (1642-1727) who, using the 
binomial theorem and some clever algebraic 
manipulation, converted the limit definition of e

( )1lim 1
x

x xe
→∞

= +

1
!

0

1 1 1 1 1 1 1
... .
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k

e
∞

=
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into an infinite series representation.  In 1669, he published
what is sometimes referred to as the Direct method:



SummationSummationSummation

The summation sign simply indicates the the quantity to the 
right of the Σ should be added over the range indicated.

Thus,

means that we must add together all of the values for k over 
the range of 1 to 6:

= 1 + 2 + 3 + 4 + 5 + 6 = 21 .

6

1k
k

=
∑

6

1k
k

=
∑



FactorialFactorialFactorial

The factorial function is denoted by an exclamation point, “!”, 
and indicates that a given number n should be multiplied by 
each preceding number from (n-1) down to 1.

7*6*5*4*3*2*1 = 50407
6*5*4*3*2*1 = 7206
5*4*3*2*1 = 1205
4*3*2*1 = 244
3*2*1 = 63
2*1 = 22
11
10

n!n



FactorialFactorialFactorial

It is important to note two things about the factorial function:

1)  These numbers grow very rapidly

2)  By definition, for any number n,

(n+1)! = (n+1) * n!  .

For example, with n = 5,

6! =  6 * 5!  = 6 * 5 * 4 * 3 * 2 * 1 .



Direct MethodDirect MethodDirect Method

Because the denominators of each term increase very 
rapidly, Newton’s series approximation is very efficient at 
generating the digits of e; the series “converges” quickly. 
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Using a large enough value of n, we can calculate the value 
of e to any desired accuracy: 



Direct MethodDirect MethodDirect Method

2.7182798
2.7182829

2.7182547
2.7180566
2.7166675
2.7083334
2.6666673
2.52
21

*n

* 6 decimal place accuracy
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Accelerating NewtonAccelerating NewtonAccelerating Newton

How can we increase the rate of convergence for this 
series?

We can try to make the denominators grow even faster by 
combining pairs of terms.  In general, we want to see what 
happens when we add

1 1 .! ( 1)!n n++

Simplifying, we see that these two terms are equivalent to

( 1) ( 1)1 1 .( 1) ! ( 1)! ( 1)! ( 1)!= =n n
n n n n n
+ +
+ + + ++ +

+2
( +1)!
n
n



Accelerating NewtonAccelerating NewtonAccelerating Newton

Using the fundamental characteristic of the factorial function 
allows us to “compress” consecutive terms into a single 
term, thereby reducing the number of mathematical 
operations required to carry out the calculation:

21 1
! ( 1)! ( 1)!= .n

n n n
+

+ ++

Starting with the second term and working backwards gives 
us an even simpler form:

11 1
! ( 1)! != .n

n n n
+

−+



Compressed SeriesCompressed SeriesCompressed Series

Using our compressed terms and substituting n = 2k (each 
value of n included two terms) gives us, in the first case,

and in the second case,

Summing 20 terms, the Direct method yields 18 accurate 
digits of e.  By comparison, these series offer, respectively, 
47 and 46 accurate digits.
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Compressed SeriesCompressed SeriesCompressed Series

It is possible to compress an arbitrary number of terms using 
the same approach.  Here we combine three terms:

2 11 1 1
! ( 1)! ( 2)! !

n
n n n n

+
− −+ + =

resulting in

which is accurate to 78 correct digits after 20 terms.
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Compressed SeriesCompressed SeriesCompressed Series

The alternating series for 1/e is derived from the work of the 
great Swiss mathematician, Leonhard Euler (1707-1783).  
Substituting -1 into his power series for e x results in

Compressing it pairwise gives us the decreasing series
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which is accurate to 46 digits after 20 terms, over 2½ times 
the accuracy of the series from which it is derived.



Further ExplorationFurther ExplorationFurther Exploration

A whole new family of series expressions for e can be 
derived by first compressing terms and then manipulating the 
resulting series in various ways.  For instance, adding the 
first two series we derived gives us a third new series:
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Further ExplorationFurther ExplorationFurther Exploration

Dividing the following compressed series by 2
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gives us
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ConclusionConclusionConclusion

In the roughly four centuries since it was discovered, e has 
revealed itself to be a truly universal constant.

While these new series appear to provide the fastest ways to 
calculate e, the greatest value of these expressions may lie 
simply in the process of obtaining them; the methods are 
exploratory, fun, and within the grasp of anyone with an 
interest in math.

Finally, these formulas remind us that, even in the case of a 
subject rigorously studied for over 300 years, students and 
amateur researchers can make personal discoveries that 
build directly on the work of giants like Newton.
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