Section 1.2: Propositional Logic

January 16, 2009

Abstract

Now we’re going to use the tools of formal logic to reach logical conclusions (“prove theo-
rems”) based on wffs formed by given statements. This is the domain of propositional logic.

Propositional wff: represent some sort of argument, to be tested, or proven, by proposi-
tional logic.

valid arguments, e.g.
Pl/\PQ/\.../\P7L—>Q

have hypotheses (we suppose — assert — that the P; are true), and a conclusion (Q). To be
valid, this argument must be a tautology (always true). To be an argument, Q must not be
identically true (i.e. a fact, in which case the hypotheses would be irrelevant!).

Proof Sequence: a sequence of wffs in which every wif is an hypothesis or the result of
applying the formal system’s derivation rules (truth-preserving rules) in sequence.

Our Objective: to reach the conclusion ) from the hypotheses P, B, ..., P,.

Types of derivation rules:

— Equivalence rules (see Table 1.12, p. 24): we can substitute equivalent wffs in a proof
sequence. One way of showing that two wifs are equivalent is via their truth tables.
* commutative
* associative
x De Morgan’s laws
* implication (P — @) <= P'V Q)

* double negation



“l think you should be more explicit liere in step two,”

Sidney Harris knows that you need to follow the rules....

Implication seems somewhat unusual, but it is suggested by Exercise 7a, section 1.1: “If
the food is good, then the service is excellent.”
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Now negate it! This leads to the rule (P — Q) <= P AQ".
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You're asked to prove the implication equivalence rule in Practice 9, p. 24. That is,

prove that
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is a tautology (notice how we use order of precedence of operations to stay sane). How
would you prove it?

Inference rules: from given hypotheses, we can deduce certain conclusions (see Table
1.13, p. 25)

* modus ponens: If ) follows from P, and P is true, then so is Q.
PAn (Poy — AN
* modus tollens: 1f ) follows from P, and @) is false, then so is P.

%P-—b O &
* conjunction: If Q) is true, and P is true, then they’re both true together.

Pa® — C p/\&>
x simplification: If both ) and P are true, then they're each true separately.

Pi

x addition: If P is true, then either P or ) is true.

Of these, addition may seem a little odd: what do you gain by adding an arbitrary
argument () to an already true wif P into a logical or?

Practice 10, p. 26. Also give step 4!
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For a more elaborate example, let’s look at #29, p. 33, which shows that one can prove
anything if one introduces a contradiction (e.g. #6, on the mensa quiz). Also called an
inconsistency, this is a beautiful and important example:
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— The difference between equivalence rules and inference rules is that equivalence rules are
bi-directional (work both ways), whereas some inference rules are uni-directional (work
in only one direction - this is what inference is all about: from this we can infer that,
but we cannot necessarily infer this from that!).

Notice that in the table 1.14 (p. 33) some rules appear twice (e.g. contraposition): two
uni-directionals can make a bi-directional (which makes this an equivalence rule).

Note for your homework: you are not allowed to invoke the rule that you are trying
to prove! Notice that the entries in this table are followed by exercise numbers: it is in
those exercises that the results are obtained!

— Deduction method: if we seek to prove an implication, we can simply add the hy-
pothesis of this conclusion implication to the hypothesis of the argument, and prove the
conclusion of the remaining implication:

PANPN...ANP,— (R—25)
can be replaced by
Pl/\PQ/\/\Pn/\R—)S

This is really “Exportation” (from Table 1.14) backwards, which says that Exportation
is behaving like an equivalence rule (but only when P is T; check the truth tables and
you'll see that the tables are not the same).

If you're interested in seeing why this rule works, you might try #49, p. 34, but think
of it this way: we're interested in assuming that all the P, are true, and see if we can
deduce the implication R — S. If R is false, then the implication is true. The only
potentially problematic case is where R is true, and S is false. Then what we want to
know is: given that

PANPAN...ANP, AR

are true, is S true?
Exercise #35, p. 33:
(A= B)ANB—-C)AN(C—-D)— (A — D)
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— Hypothetical syllogism:
(P—>Q)/\(Q—>R)—>(P—>R)

(and see a whole long list of rules in Table 1.14). This rule might be referred to as
transitivity.

A new rule is created each time we prove an argument; but we don’t want to create so many
rules that we keel over under their weight! Keep just a few rules in view, and learn how to
use them well....

e Our goal may well be to turn a ”real argument” into a symbolic one. This allows us to test
whether the argument is sound (that is, that the conclusion follows from the hypotheses).

Exercise #44, p. 34: If the ad is successful, then the sales volume will go up. Either the
ad is successful or the store will close. The sales volume will not go up. Therefore the store

will close. (A, S, C)
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e The propositional logic system is complete and correct:

— complete: every valid argument is provable.

— correct: only a valid argument is provable.

The derivation rules are truth-preserving, so correctness is pretty clear; completeness is not!
How can we tell if we can prove every valid argument?!
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