Section 2.1: Proof Techniques

February 2, 2009

Abstract

Sometimes we see patterns in nature and wonder if they hold
in general: in such situations we are demonstrating inductive
reasoning to propose an hypothesis, which may become a the-
orem which we attempt to prove via deductive reasoning. From
our work in Chapter 1, we conceive of a theorem as an argument
of the form P — (), whose validity we seek to demonstrate.

This section outlines a variety of proof techniques, including
direct proofs, proofs by contraposition, proofs by contradiction,
proofs by exhaustion, and proofs by dumb luck or genius! You
have already seen each of these in chapter 1 (with the exception
of “dumb luck or genius”, perhaps!).

1 Theorems and Informal Proofs

The theorem-forming process is one in which we

e make observations about nature, about a system under study,
ete.;

e discover patterns which appear to hold in general;
e state the rule; and then
e attempt to prove it (or disprove it!).

This process is formalized in the following definitions:

¢ inductive reasoning - drawing a conclusion based on experi-
ence, which one might state as a conjecture, hypothesis, or theo-
rem.

¢ deductive reasoning - application of a logic system to investi-
gate a proposed conclusion based on hypotheses (hence proving,
disproving, or, failing either, holding in limbo the conclusion).

e counterexample - an example which violates a proposed rule
(or theorem), proving that the rule doesn’t work in the particular
interpretation.



Before attempting to prove a theorem, we should be convinced of its
correctness; if we doubt it, then we should pursue the line of our doubt,
and attempt to find a counterexample.

1.1 Exhaustive Proof

¢ Example: The Four-color problem

— Description (see p. 432).

— This theorem is partly famous because it provided the first
example of a computer-aided proof of a major result. The
reason the computer became useful was that the proof came
down to testing a rather large number of special cases (proof
by exhaustion).

When there are only a few things (in particular, a finite number)
to test, we can use proof by exhaustion.

e Example: Prolog, in which we use Horn Clauses, resolution,
and a finite number of possibilities (finite database) to decide if
a theorem is true.

¢ Example: My young friend Sam

Kids are wonderful at developing conjectures, and sometimes even
applying deductive logic, as illustrated in my friend Sam’s Story.
Sam made an amazing application of proof by exhaustion.

Kids will make all sorts of false conjectures (e.g. “All animals
living in the ocean are fish,” or “all meat-eaters are animals”),
and parents, siblings, friends, and teachers all have the priviledge
and pleasure of coming up with counterexamples.

1.2 Direct Proof

The most obvious and common technique is the direct proof: you start
with your hypotheses { P;}, and proceed directly toward your conclusion
Q:
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Example: Exercise 12, p. 98 Prove directly that the sum of even
integers is even.
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1.3 Contraposition DA

If P — () isn't getting you anywhere, you can use your logic systems
to rewrite it as (' — P’ (the contrapositive). This is called “proof by
contraposition”.

Example: Practice 4 and 5, p. 94: The statements from chapter

1.1 are:

(a) If the rain continues, then the river will flood.
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(¢) The avocados are ripe only if they are dark and soft.

(d) A good diet is a necessary condition for a healthy cat.

Example: Exercise 21, p. 99 Prove: If a number z is positive,
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1.4 Contradiction

par
Contradiction represents some interesting logic: again, we want to prove
P — (@), but rather than proceed directly, we seek to demonstrate that P —) (Q\; 0>
P A Q" — 0: that is, that P and @' leads to a contradiction. Then we
cannot have both P true, and @ false - which would lead to P — @ P = C&’——'}O')

false, of course. S ’
\J)
Example: Exercise 26, p. 99 Prove: If x is an even prime I ~EL 0

number, then z = 2.
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Table 1: Summary of useful proof techniques, from Gersting, p. 96.

Proof Technigue | Approach to Prove 7 — () Remarks

Fxhanstive Proof | Demonstrate £ — ) for all examples/cases. | Examples feases finite

Direct Proof ‘ Assume P, deduce Q. Standard approach

Clontraposition Assnme €Y, deduace . LY pives more amimo?
Contracdiction Assnme P A QY. deduee contradiction.

1.5 Serendipity

Mathematicians often spend a great deal of time finding the most “el-
egant” proof of a theorem, or the shortest proof, or the most intuitive
proof. We may stumble across a beautiful proof quite by accident
(“serendipitously” ), and those are perhaps the most pleasant proofs of
all. There is a wonderful story associated with Exercise 69, p. 100.

Prove: the sum of the integers from 1 to 100 is 5050.
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