Sections 2.4/2.5: Recursion and
Recurrence Relations

February 11, 2009

Abstract

In these sections we examine multiple applications of recursive
definition, and encounter many examples. Recurrence relations are
defined recursively, and solutions can sometimes be given in “closed-
form” (that is, without recourse to the recursive definition). We will
solve one type of linear recurrence relation to give a general closed-
form solution, the solution being verified by induction.

1 Recursive Definitions

A recursive definition is one in which
1. A basis case (or cases) is given, and

2. an inductive or recursive step describes how to generate additional cases
from known ones.

Example: the Factorial function sequence:
1. F(0) =1, and

2. F(n)=nF(n—1), n % (.

)

Note: This method of defining the Factorial function obviates the need
to “explain” the fact that F'(0) = 0! = 1. For that reason, it’s better than
defining the Factorial function as “the product of the first n positive integers,”
which it is from n = 1 on....

In this section we encounter examples of several different objects which are
defined recursively (See Table 2.5, p. 139):

e sequences — an enumerated list of objects (e.g. Fibonacci numbers -
Practice 12, p. 130 - history, #34, p. 143)

I'm very fond of lisp:

(defun fib(n)
(case n
;3 the following two cases are the basis cases:
(1 1)
(2 1)
;; and, if we’re not in a basis case, then we should use recursion:
(t (+ (fib (- n 1)) (fib (- n 2))))
)
)
> (fib 5)
5
> (mapcar #’fib (iseq 0 8))
(11235813 21)

Note, however, that this is a horrible way to compute Fibonacci num-
bers. If you try (fib 55), it will first compute (fib 54) and (fib 53). (fib
54) will compute (fib 53) (but we're already scheduled to do that!)

> (time (fib 20))

The evaluation took 0.02 seconds; 0.00 seconds in gc.
6765

> (time (fib 30))

The evaluation took 2.85 seconds; 0.05 seconds in gc.

832040

> (time (fib 35))

The evaluation took 31.61 seconds; 0.70 seconds in gc.
9227465

So recursive definitions of functions may be easy, but they may also be
tremendously wasteful.

We’ll be proving various facts about Fibonacci numbers. Pay careful
attention to the differences in examples #31 and #32: I love mathe-
matics because there’s always more than one way to show something
— but these examples illustrate why you want to stop and think about
strategy before you attempt a proof!

e sets (e.g. finite length and palindromic strings - Example 34 and Prac-
tice 16 and 17, pp. 133)

/4{ ’)“‘é«// = 60/(3
/ A
Ut - st £ all Btk JgTioshogs

724-55, Carves - G + | - Oﬁ’u-'J—(/z,\,jﬁ‘l S)Z/\l/))
Epl) ghomg 3 11 & B L sy

\

\j‘\%‘—o'}'\-w\ <J—V ‘o d—l-,\,{,_ (Cj\f\-']“(,){,\Jﬁ S?L"\‘“Sﬁ X é-\7>
Xy 15 e InadT ?th SwLn\/s g

e operations (e.g. string concatenation - Practice 18, p. 134)

-L[Z\\) ol e /LL"A\'\-{, P.g/,,\offw,_fL’ 5~Lﬁ\,\jg 7

K}(«.rs.‘/a, S-}Y : _T_f W have F‘\ /.AM,—\- () (71((\,\,\ <
X + 9 ﬁv\ ><>’)< r S /Q"'\VV’NL

-

G‘-.ul-—-p‘.. ,o«l-‘,\ax/u-«g 7) ’7\10/'\ 070 —~ \\1 l e~
V‘\\:"MM\ _

LLo\D (| o\

e algorithms (e.g. BinarySearch - Practice 20, p. 139; check out Exam-
ple #41, p. 139, for the definition of “middle”.)

Or my favorites, such as unix shell scripts. Here’s one one might call
“recurse”, for applying an operations to all “ordinary” files:

#!/bin/sh
command=$1
files=‘1s®
for i in $files
do
if test -d $i
then
cd $i
directory="‘pwd‘
echo "changing directory to $directory..."
recurse "$command"

cd ..
elif test -h $i
then
echo $i is a symbolic link: unchanged
else
$command $i
fi
done

2 Solving Recurrence Relations

Vocabulary:
e linear recurrence relation: S(n) depends linearly on previous S(r),
r<n:
S(n) = fu(n)S(n =1) +---+ fr(n)S(n — k) + g(n)

The relation is called homogeneous if g(n) = 0. (Both Fibonacci and
factorial are examples of homogeneous linear recurrence relations.)

e first-order: S(n) depends only on S(n — 1), and not previous terms.
(Factorial is first-order, while Fibonacci is second-order, depending on
the two previous terms.)

e constant coefficient: In the linear recurrence relation, when the co-
efficients of previous terms are constants. (Fibonacci is constant coef-
ficient; factorial is not.)

e closed-form solution: S(n) is given by a formula which is simply
a function of n, rather than a recursive definition of itself. (Both Fi-
bonacci and factorial have closed-form solutions.)

The author suggests an “expand, guess, verify” method for solving recurrence
relations.

Example: The story of T

1. Practice 11, p. 130

2. Practice 19, p. 137: Here is the recurrence relation for Example 11, p.
130, in lisp:

(defun Tee(n)
(if (integerp n)

(cond
((>=n 2)
(+ (Tee (-n 1)) 3)
)
((=n 1
1
)
(t (print "Tilt! Only positive ints allowed..."))
)
(print "Tilt! Only positive ints allowed...")
)
)
> (tee 2)

4
> (mapcar #’tee (iseq 1 10))
(147 10 13 16 19 22 25 28)

3. Practice 21, p. 148

Example: general linear first-order recurrence relations with constant coef-

ficients.
S(l)=a
S(n)=cS(n—1)+g(n)

“Expand, guess, verify” (then prove by induction!):

S(n) =c""1S(1) + ic”‘@(i)

429) Y 142
/
L) .:(
Lb—)=3

Lia) = LU= g Lin-2) n>, 3
o L, 7,4, A, 0

Prova_ . [(n) = Flat1) 4 F{,\-,)
st fndectos {24 pemop 10)

7]
Arclor— ¢ LY ¢ FGB) + E ()
3 = L+ | —

b (um = Fle) ¢ Flev) mﬂ
P(Y‘X rﬁur' Yy = Z, cor b

Show + Plin)t Lle) =g o) + £

Lk) + | lk-)

-~
[(et

1

Fliew) = Fler) + L k-)

r\

F(k+<1~/:(tc-|)_|_ Fd;)i;([‘"?->
Flevd)y + Fle) e

