Section 6.2: Euler Paths and
Hamiltonian Circuits

April 1, 2009

Abstract

Graphs are useful for characterizing two interesting and im-
portant problems: the traveling salesman problem, and the high-
way inspector problem. The problem in each case is to traverse
a network in an optimal way, whether the focus is on the nodes
(salesmen; Sir William Rowan Hamilton, 1805-1865) or the arcs
(inspectors; Leonhard Euler, 1707-1783).

1 Euler Paths (the Highway Inspector prob-
lem)
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Definition: an Euler Path is a path in which each arc/\is used exactly
once.

v~
Euler got interested in these arcs when he encountered the Konigsberg < [+ 3¢
bridge problem (p. 491); a game in which the object was to cross
every bridge without crossing any bridge twice. The old story is that
Euler solved this problem by inventing and then using Graph Theory
(disputed by our author — see the footnote on page 491).

The bridges are the arcs, and the land masses are nodes, turned into
the graph of Figure 6.5, p. 491.

Example: Practice 7, p. 492 (vm; Cnrsal / pan b Cnrgal )
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Theorem: in any graph, the number of odd nodes (nodes of odd de-
gree) is even.

Outline of author’s proof:

1. Suppose that there are A arcs, and N nodes. Each arc contributes
2 ends; the number of ends is 24, and the degrees d; satisfy
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and the left hand side is even (call it 2m).

3. The sum of two odd degrees is even, so assume (we proceed by
contradiction) that there is an odd number of odd nodes. We can
pair up all but one (say 7 = k), and then

ild; odd; ik
4. From which we conclude that
2m — 2n =dj,

which means that dj was, in fact, even; but this is a contradiction.
Hence, the number of odd nodes is even.

Alternate proof: by induction on number of arcs, using cases.

Theorem: an Fuler path exists in a connected graph <= there are
either two or zero odd nodes.

e Is this obvious? Why only two odd nodes?

e The “two odd node” case reduces to the even case: start at one
odd node, and trace a path to the other. Remove this subgraph,
and what’s left (and what might that be? What are the possi-
bilities?) has even nodes only; so, since an Euler path exists for
even noded graphs, we can reattach the pieces to form the original
graph, with its Euler path.



Example: Practice 9, p. 493 Is the Konigsberg bridge walk possi-
ble?

2 EulerPath Algorithm

The EulerPath algorithm (p. 494) makes use of the adjacency ma-
trix representation of a graph to check for Euler paths. 1t simply counts
up elements in a row 4 of the matrix (the degree of node 7), and checks
whether that’s even or odd; if in the end there are not zero or two even

nodes, there’s no Euler path! Doe s Ao ~ /s o T2 (o
Example: Exercise 12, p. 497 clect L =n 7
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EulerPath is O(n?), meaning that the number of operations in the worst
case is on the order of n?.



3 Hamiltonian Circuit Problem (the trav-
eling salesman problem)

Definition: a Hamiltonian Circuit (or Cycle) is a cycle using

every node of the graph (as a cycle, no node but the first is ever revis-
ited).

“For example, consider a robot arm assigned to solder all the connec-
tions on a printed circuit board. The shortest tour that visits each
solder point exactly once defines the most efficient path for the robot.
A similar application arises in minimizing the amount of time taken by
a graphics plotter to draw a given figure.”

(from www.cs.sunysb.edu/~algorith/files/traveling-salesman.shtml )

An example is a complete graph, like K5: there is a path from each
node to every other node, so no matter where you start, you can trace

a cycle through every node (WKQ!).

Example: Practice 11, p. 495
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Example: Exercise 15, p. 497 (using trees, symmetry, and exhaus-
tion!)




Unfortunately, there’s no nice HamiltonCircuit algorithm for determin-
ing when there is a circuit (only very grungy, computationally inten-
sive ones!). The traveling salesman problem (the optimal Hamiltonian
Circuit on a weighted graph) is the poster child for the NP-complete
problem (see p. 662, if interested!).



