Lab for the Fundamental Theorem of Calculus (part II)

Big picture: defining functions in terms of integrals.

b
We now know how to evaluate definite integrals / f(z)dz, if we have formulas for f(x)

and know an anti-derivative for f (let’s call it F):

So evaluation’s easy in this case.
The second part of the Fundamental Theorem of Calculus gives us a very impressive new
tool: it allows us to define new kinds of functions using integrals. What does this mean?
Consider a definite integral (and notice that we're going to switch z for a new dummy
variable of integration, ¢ — this is because we love to use x for our variable in functions):
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what’s so special about the letter b7 Could we just as well write
| #wdt = Fa) - F(a)
If so, we can think of x as a variable, and so we’ve used the definite integral to define a new

function, based on f(t).
This function is an anti-derivative of f:

Hence, F'(x) = f(x).

THEOREM 1 Fundamental Theorem of Calculus, Part Il Let f(x) be a continuous
X
function on [a. b]. Then A(x) = [ f(1)dr is an antiderivative of f(x), that is,
of
A'(x) = f(x).or equivalently,
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Furthermore, A(x) satisfies the initial condition A(a) = 0.

Of course our author uses A, rather than F', to emphasize that we get an anti-derivative.
The basic idea is that we can use the integral, which was derived to represent the area under
a curve, as a means to creating or representing anti-derivatives for functions.

This is a novel concept: we’ve been thinking of integrals as representing area under a
curve. Now we're going to “liberate” an endpoint — turn it into a variable, instead of thinking
of it as a fixed constant, and so the answer becomes a function.



One important application where we see functions defined in terms of integrals is in
probability. I've studied cicada-killer wasps, and so we’ve studied populations of cicadas.
The figure below shows the distribution of sizes of cicadas in a particular part of Florida,
modeled on real data. At left is the probability density function p(x). As a probability
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density function it has some important properties, like p(x) > 0 and

/OO p(x)dx =1

—0o0

What this says is that every cicada is somewhere: the probability is 1 that you’ll find a
cicada with wing length somewhere between —oo and oo (big deal, right?! We knew that...).

At right in the first figure we illustrate the probability of finding a cicada in a small band
of right wing lengths between ¢ and ¢ + At (I should have used A, but my software won't
plot Greek letters in figures!). We can think of this tiny probability (i.e. area) as an integral:

t+At
AP(t) = P(t <z < t+At) = / p(z)dz
t

In general, we define the Cumulative Distribution Function P as

P(t) = /Otp(a:)dx

(we can start our lower limit at 0, rather than —oo, because no RWL is negative). In the
second set of figures below, we have at left the probability that a cicada has a RWL between
0 and t (i.e., P(0 < x <'t), which is just P(t)). At right in the figure is a plot of p(z) and
P(x) together. One is the density, and the other the cumulative function.

Problem 1: Now, to make the connection elaborated in the FTC II, consider the plot

of P(t < x < t+ At). In the following “equations”, insert either = or ~ to make each
mathematical phrase correct:

1.
AP(t) = P(t + At) — P(t) At - p(t)

What does the right-most quantity represent graphically?
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2. Relate the following four quantities using =, =, or =:

AP(t) P(t+ At) — P(t)

P'(t t
(t) Iy A p(t)
3. Now, in the limit as At — 0, we have
AP(t) . P(t+ At)— P(t)
/
PO T AT A o)

Problem 2: justify the shapes of the graphs of p and P, relative to each other, as seen in

the figure above (at right). What should their relationship be?



