Last Time | Next Time |
But they didn't restrict themselves to "halving", as our next example shows. Divide 6 by 7:
1 | 7 | |
1/2 | 3+1/2 | * |
1/4 | 1+1/2+1/4 | * |
1/7 | 1 | |
1/14 | 1/2 | * |
1/28 | 1/4 | * |
The starred entries on the right add up to 6:
Dominic Olivastro, "Ancient Puzzles", suggests a third reason why this use of unary fractions is good. Consider the problem Ahmes poses of dividing 3 loaves of bread between 5 people. We would answer "each person gets 3/5-ths of a loaf". If we implemented our solution, we might then cut 2 loaves into 3/5 | 2/5 pieces, with bread for 3 people; then cut one of the smaller pieces in half, giving the other two people 2/5 + 1/5 pieces. Mathematically acceptable, but try this with kids and they will insist that it is not an even division. Some have larger pieces, some have smaller. Ahmes would calculate 3/5 as : 3/5 = ()3 + ()5 + ()15 [ = 1/3 + 1/5 + 1/15 ] Now cut one loaf into fifths, cut two more into thirds, then take one of the 1/3-rd pieces and cut it into 5-ths (for the 1/15-th pieces), and you can now distribute everyone's 3/5-ths share in a way that _looks_ equal, since they will have exactly the same size pieces. (And no, I don't want to argue about the crust.)
(This illustrates that the priest would have used the unit fraction table, rather than our method -- which would have given us the answer 1/2+1/10 -- both answers are right! But I (and mathematicians in general) think that our shorter answer is better....)
What does each of the digits in the number 1729 mean?
<body bgcolor="#FFF8DC">
What does #FFF8DC have to do with color?