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Abstract

This section lays out the properties of the real numbers,
which we will be exploring in the material to follow. In par-
ticular, we start with the notion that the reals are a particular
type of algebraic structure, called a field. Fields have divisors.
Furthermore, as you know, the real numbers have an ordering
defined on them, and this ordering will be made more precise.
The “distance function” (absolute value function) will be im-
portant to determine how far apart two reals are.

Induction is also introduced here, because we need it now.

1 Axioms of a Field

1. A field is a generalization of a ring;

2. a ring is a generalization of a group;

3. a group is a generalization of a monoid.

A group is a simple structure. Groups must satisfy four axioms:

1. Closure

2. Associativity

3. Identity element

4. Inverse elements

illustrated by an example of an important group: the group of permu-
tations of a set.
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Consider the set of students in this room. A permutation of the
students rearranges them in their chairs, leading to a different con-
figuration of the room. A permutation of a permutation is another
permutation (compositions lead to members of the group). We can
permute the students, then undo the permutation with another per-
mutation (the inverse). There is also an identity permutation (no one
moves!). That’s all we need for a group.

In general, a group may be non-commutative: in this example, the
order of permutations matters (the group is non-commutative). If I
permute (swap) the positions of Jennifer and Chris, and then Chris
and Amber, it’s different from what happens if I swap the positions of
Chris and Amber, then Jennifer and Chris.

A ring is a set R with two binary operations:

1. the binary operation of addition: + : R → R (defined on the
Cartesian product of R with itself); and

2. the binary operation of multiplication: · : R → R

(R, +) is required to be an abelian group (that is, commutative group)
under addition; and (R, ·) is required to be a monoid under multi-
plication (that’s a group, except that it doesn’t necessarily have the
inverses). Furthermore, the distributive law holds:

1. For all a, b and c in R, the equation a · (b + c) = (a · b) + (a · c)
holds.

2. For all a, b and c in R, the equation (a + b) · c = (a · c) + (b · c)
holds.

The integers under the usual operations of addition and multiplication
is a commutative ring (meaning that · is also commutative – divisors
are obviously a problem for integers!).

As we move from integers toward the reals, the multiplicative in-
verses exist, but if we start with the ring of integers, we’ll only get the
field of rational numbers by multiplicative inverses. It will be necessary
to “complete” the reals.

Another problem for the real numbers, as we know, is that we can’t
divide by zero.... But we can still define inverses for all the other reals,
so that completes the definition of the field (giving this distinguished
additive identity 0 special place): for each a ∈ F for which a 6= 0, there
is a multiplicative inverse – that is, if a ∈ F and a 6= 0, there is an

element in F , denoted a−1 or
1

a
, for which a · a−1 = 1.
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Here are the axioms for the ordered field of the real numbers, spelled
out:

• A1: + and · are closed binary operations on the reals.

• A2: + and · are associative.

• A3: + and · are commutative.

• A4: Distributivity holds: a · (b + c) = (a · b) + (a · c).

• A5: ∃ identities: 0 + a = a and 1 · a = a.

• A6: ∃ additive inverses.

• A7: ∃ multiplicative inverses (for a 6= 0 ).

• A8: ∃ non-empty subset P ∈ IR such that the following hold:

a, b ∈ P → a + b ∈ P
a, b ∈ P → a · b ∈ P
a ∈ IR → (a ∈ P ) ∨ (−a ∈ P ) ∨ (a = 0)

Given these axioms, there are several theorems that we could immedi-
ately investigate:

1. Let F be a field. Then the identities are unique.

2. Let F be a field. Then the inverses are unique.

3. Let F be a field. Then a · 0 = 0 for every a ∈ F .

4. Let F be a field. Then

(a) a · (−b) = (−a) · b = −(a · b)

(b) −(−a) = a

(c) (−a) · (−b) = a · b

Could you prove all of those? If not, which would cause you trouble?

3



2 The Order Axiom

Let F be a field. Then F is an ordered field if it satisfies the addi-
tional axiom: there is a nonempty subset P of F (called the positive
subset) for which

1. If a, b ∈ P , then a + b ∈ P (closure under addition)

2. If a, b ∈ P , then ab ∈ P (closure under multiplition)

3. For any a ∈ P , exactly one of the following holds: a ∈ P , −a ∈ P ,
or a = 0 (law of trichotomy).

Definition: Let F be an ordered field, and let P be the positive subset
of F . Let a, b ∈ F . We say a < b if b − a ∈ P . We say a ≤ b if a < b
or a = b. The statements a < b and b > a are equivalent.

Theorem 1-7: Let F be an ordered field. For a, b, c ∈ F the following
hold:

1. If a < b, then a + c < b + c.

2. If a < b and b < c, then a < c. (transitivity)

3. If a < b and c > 0, then ac < bc.

4. If a < b and c < 0, then bc < ac.

5. If a 6= 0, then a2 > 0.

This could be called Brahmagupta’s theorem (India, 7th century AD):
he apparently used zero for the first time in a modern way, and wrote
down these laws.

Theorem 1-8: Let x ∈ IR∗

+, n ∈ IN. Then there is a unique y ∈ IR∗

+

such that yn = x. We define y ≡ x1/n.

Theorem 1-9: Let x ∈ IR∗

+, and s1, s2 ∈ IN such that s1 < s2. Then

1. x > 1 → xs1 < xs1

2. 0 < x < 1 → xs1 > xs1

Theorem 1-10: Let x, y ∈ IR∗

+, with x < y, and let s ∈ IQ∗

+. Then
xs < ys.
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3 Mathematical Induction

Induction is a very beautiful and somewhat subtle method of proof:
the idea is that we want to demonstrate a property associated with
natural numbers (or a subset of the natural numbers). As a typical
example, consider a theorem of the following type (which we might call
“Gauss’s theorem,” hypothesized when he was seven or so):

Prove that the sum of the first n natural numbers is n(n+1)
2

.

An induction proof goes something like this:
• We’ll show that it’s true for the first case (usually k = 1, called

the base case). While the first case is often k = 1, this isn’t
mandatory: we simply need to be sure that there is a first case
for which the property is true. k = 0 is another popular choice....

• Then we’ll show that, if the property is true for the kth case, then
it’s true for the (k + 1)th case (the inductive step).

• Then we’ll put them together: if it’s true for 1, then it’s true
for 2; if it’s true for 2, then it’s true for 3; .... “to infinity, and
beyond!” Or up the ladder, as our author would say.

Imagine dominoes falling. That’s what it’s like.

The most commonly used form of the principle of induction is ex-
pressed as follows:

First Principle of Mathematical Induction:

1. P (1) is true
2. (∀k)[P (k) true → P (k + 1) true ]

}

→ P (n) true for all positive integers n

Vocabulary:

• inductive hypothesis: P (k)

• basis step (base case, anchor): establish P (1)

• inductive step (implication): P (k) → P (k + 1)

Our author proves “Gauss’s theorem” by induction: for any natural
number n, 1+ 2+3+ . . .+n = n(n+1)

2
. He also proves properties of the

binomial coefficients, and then the binomial theorem.

Let’s do a different proof: let’s prove that 2n−1 ≤ n! for n ≥ 1.

A Couple of Fun Examples:
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1. The prisoner’s last request (finite backwards induction!)

2. Let’s use induction to prove an amazing fact: all horses are the
same color.

Proof: By induction, on the number of horses.

Base case: 1 horse. No problem! Same color.

Inductive step: we’ll show that if it is true for any group of N
horses, that all have the same color, then it is true for any group
of N + 1 horses.

Well, given any set of N + 1 horses, if you exclude the last horse,
you get a set of N horses. By the inductive step these N horses
all have the same color. But by excluding the first horse in the
pack of N +1 horses, you can conclude that the last N horses also
have the same color. Therefore all N + 1 horses have the same
color.

QED – or have we?

4 The Absolute Value Function

This provides us with our metric (or measuring stick) for measuring
distances along the real axis. It’s funny, but this is one of the most mis-
understood functions in calculus, primarily because of its definition:

Definition: The absolute value of a ∈ IR is given by

|a| =

{

a if a ≥ 0
−a if a < 0

Having that negative sign in there just seems to scream out at some
folks that the absolute value can be negative. But that would be bad!

Theorem 1-13: The following hold for a, b ∈ IR:
1. |a| ≥ 0, with equality iff a = 0.

2. |a| = |−a|.

3. −|a| ≤ a ≤ |a|.

4. |ab| = |a| · |b|.

6



5. 1/|b| = |1/b| if b 6= 0.

6. |a/b| = |a|/|b| if b 6= 0.

7. |a| < b iff −b < a < b.

8. |a + b| ≤ |a| + |b| (the triangle inequality - draw the triangle!)

9. ||a| − |b|| ≤ |a − b|. (the signs can work for you, on the right)

A metric (or measuring stick) is defined by the three properties:

1. d(a, b) ≥ 0, and d(a, b) = 0 ⇐⇒ a = b.

2. d(a, b) = d(b, a)

3. d(a, c) ≤ d(a, b) + d(b, c).

The absolute value function can be used on the reals via the definition
d(a, b) = |a − b| to satisfy the definition of a metric.

Example: Exercise 15, p. 24 Prove by induction the following
generalization of the triangle inequality:

|a1 + a2 + . . . + an| ≤ |a1| + |a2| + . . . + |an|

where ai ∈ IR.

Proof: We prove this by induction. The base case is the triangle
inequality,

|a1 + a2| ≤ |a1| + |a2|

which was proven as part of Theorem 1-13.
For the induction step, we need to assume Pk and show that Pk+1

follows. So assume Pk:

|a1 + a2 + . . . + ak| ≤ |a1| + |a2| + . . . + |ak|

Now consider

|a1+a2+. . .+ak+ak+1| = |(a1+a2+. . .+ak)+ak+1| ≤ |a1+a2+. . .+ak|+|ak+1|

by the base case. Then

|a1 + a2 + . . . + ak + ak+1| ≤ |a1| + |a2| + . . . + |ak| + |ak+1|

by the induction hypothesis, and so we have demonstrated Pk+1. Hence,
the result follows by induction.
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Example: Exercise 18, p. 24 : Prove the Schwarz inequality: that

n
∑

i=1

aibi ≤

(

n
∑

i=1

a2
i

)
1

2

(

n
∑

i=1

b2
i

)
1

2

We’re given a hint: to consider
n
∑

i=1

(αai − βbi)
2 ≥ 0, and choose α and

β wisely.

n
∑

i=1

(αai−βbi)
2 =

n
∑

i=1

[α2a2
i−2αβaibi+β2b2

i ] = α2
n
∑

i=1

a2
i−

n
∑

i=1

2αβaibi+β2
n
∑

i=1

b2
i ≥ 0.

Hence

α2
n
∑

i=1

a2
i + β2

n
∑

i=1

b2
i ≥ 2αβ

n
∑

i=1

aibi

We need the right hand stuff – what will we do with the left? Choose

α2 =
1

∑n
i=1 a2

i

β2 =
1

∑n
i=1 b2

i

Then

1 + 1 ≥ 2
1

(
∑n

i=1 a2
i )

1

2

1

(
∑n

i=1 b2
i )

1

2

n
∑

i=1

aibi

or
n
∑

i=1

aibi ≤

(

n
∑

i=1

a2
i

)
1

2

(

n
∑

i=1

b2
i

)
1

2

As for the question of when equality holds, we can go back to the hinted
inequality, setting it to zero, and we’ll see that we’ll have equality when

ai =
β

α
bi

(with
β

α
≥ 0). If you’ll recall your linear algebra, the quantity on the

left is the inner product of vectors a and b, whereas the right-hand side
is the product of the norms of each vector....
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