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Abstract

Our author presents sequences as a means of studying phenomena of a dynamic
nature, given at discrete units of time which can be counted off by the natural numbers.

The question of limits is then a question about the long-term (asymptotic) behavior
of those phenomena.

Definition: sequence: A sequence of real numbers is a function from the positive integers
into the real numbers.

Definition: converges to the number L, limit, diverge: We say that the sequence
of real numbers {x

n
} converges to the number L if, ∀ε > 0, ∃N(ε) ∈ IN such that if

n > N(ε), n ∈ IN, then |x
n
− L| < ε. We say that L is the limit of the sequence {x

n
},

and we write lim x
n

= L, or {x
n
} → L. If a sequence does not converge, then it is said to

diverge.

Indeed, the question of limits is a question about the long-term (asymptotic) behavior of
those phenomena, these sequences. It’s a question about what we call the tail of the sequence
– all those terms located past a certain point, past a certain index value of the natural
numbers. This is illustrated quite well in Figure 2-1, p. 37.

Example: #2, p. 46 The sequence {a
n
} = {

1

n
} is composed of strictly positive terms for

all n ∈ IN, with a limit of L = 0.

Proof: Certainly the terms are positive, as reprocals of positive numbers. Given an ε > 0.
Then we must find N(ε) such that

n > N(ε) → |a
n
− 0| < ε

That is, that

n > N(ε) →
1

n
< ε

Simply choose N(ε) >
1

ε
: then

n > N(ε) → n >
1

ε
→

1

n
< ε.
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Definition: diverge to infinity: A sequence of real numbers {x
n
} is said to diverge to

infinity if, ∀M ∈ IR, ∃N(M) ∈ IN such that if n > N(M), n ∈ IN, then x
n

> M . In this
case we write lim x

n
= ∞, or {x

n
} → ∞.

Similarly for diverge to negative infinity, in the obvious way.

Example: You might not be surprised to learn that the sequence of multiplicative inverses
of the sequence of #2, p. 46 diverges to infinity as that sequence converges to 0: {b

n
} = {n}

is composed of strictly positive terms for all n ∈ IN, diverging to ∞.

Theorem 2-1: A sequence of real numbers can converge to at most one number.

Proof: (by contradiction): Suppose that there exist two limits of the sequence {x
n
}, L 6= M .

Then ∀ε > 0,

(i) ∃N1(ε) ∈ IN such that n > N1(ε) → |x
n
− L| < ε

(ii) ∃N2(ε) ∈ IN such that n > N2(ε) → |x
n
− M | < ε

WLOG assume that M > L, and consider ε∗ = M−L > 0. Take ε =
ε∗

4
. Then ∃N1(ε), N2(ε)

as described above, and hence

n > max(N1(ε), N2(ε)) → (|x
n
− L| < ε) ∧ (|x

n
− M | < ε)

Thus, for such n, (x
n

< L + ε) ∧ (x
n

> M − ε). But since M = L + ε∗ = L + 4ε, we have

L + 3ε < x
n

< L + ε

But this violates the transitivity of L + 3ε > L + ε. Contradiction. Q.E.D.

Theorem 2-2: The sequence of real numbers {a
n
} converges to L if and only if ∀ε > 0 all

but a finite number of terms of {a
n
} lie in the interval (L − ε, L + ε).

Observe: That is: eventually every term lies inside the interval (L − ε, L + ε). The tail
is confined to this band of the range a width of ε about L. And that will be true no matter
how small the band.

Definition: bounded sequence: A sequence is bounded if the terms of the sequence
form a bounded set.

Theorem 2-3: If {a
n
} is a convergent sequence of real numbers, then the sequence {a

n
}

is bounded.

Theorem 2-4: Suppose that {a
n
} and {b

n
} are sequences of real numbers such that

{a
n
} → a and {b

n
} → b. Then

(i) {a
n

+ b
n
} → a + b.

(ii) {ca
n
} → ca for any c ∈ IR.
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(iii) {a
n
b
n
} → ab.

(iv) If b 6= 0 and b
n
6= 0 for any n ∈ IN, then

a
n

b
n

→
a

b
.

Theorem 2-5:

(i) Suppose that {a
n
} converges to L, and that a

n
≤ K for every n. Then L ≤ K.

(ii) Suppose that {a
n
} and {b

n
} are sequences with a

n
≤ b

n
for every n. Also suppose that

{a
n
} → L and {b

n
} → K. Then L ≤ K.

(iii) If {a
n
} and {b

n
} are sequences with 0 ≤ a

n
≤ b

n
for every n and if {b

n
} → 0, then

{a
n
} → 0. (A pinching theorem.)

(iv) If {a
n
}, {b

n
}, and {c

n
} are sequences with a

n
≤ b

n
≤ c

n
for every n and if {a

n
} → L

and {c
n
} → L, then {b

n
} → L. (The pinching theorem!)

Proof: (exercises #8, 9, p. 47) We prove the theorem by starting with a lemma:

Lemma : Consider a sequence {a
n
} of all positive elements (a

n
≥ 0) that converges:

{a
n
} → a. Then a ≥ 0. The proof is by contradiction. Assume not: then a < 0. Consider

ε =
−a

2
. Then ∃N(ε) ∈ IN such that n > N(ε) → |a

n
− a| < ε. But

|a
n
− a| < ε → −ε < a

n
− a < ε → a − ε < a

n
< a + ε

and hence
a

n
< a + ε =

a

2
< 0,

which contradicts the positivity of the elements a
n
. Hence, the limit a ≥ 0.

We now push on to the proof of (i), by application of Theorem 2-4 and a specially
conceived sequence. Suppose that {a

n
} converges to L, and that a

n
≤ K for every n. We

want to show that L ≤ K.

Consider sequence {b
n
}, with b

n
= K − a

n
. Then {b

n
} satisfies the lemma, since b

n
≥ 0,

and since {b
n
} → K − L (by Theorem 2-4)1, we have that K − L ≥ 0, or K ≥ L.

Now on to the proof of (ii): suppose that {a
n
} and {b

n
} are sequences with a

n
≤ b

n
for

every n. Also suppose that {a
n
} → L and {b

n
} → K. Then we want to show that L ≤ K.

Choose {c
n
} = {b

n
− a

n
}. Every term of {c

n
} is positive, since a

n
≤ b

n
for all n.

Furthermore {c
n
} converges by Theorem 2-4, with limit K − L. Hence, by the lemma, the

limit b − a ≥ 0; that is, a ≤ b.

1We haven’t shown that the limit of a constant sequence is the constant. Show it!
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Next we show (iii): suppose that {a
n
} and {b

n
} are sequences with 0 ≤ a

n
≤ b

n
for every

n and if {b
n
} → 0. We want to show that {a

n
} → 0.

By definition, we have that ∀ε > 0, ∃N(ε) ∈ IN such that if n > N(ε), n ∈ IN, then
|b

n
| < ε. Since 0 ≤ a

n
≤ b

n
, we also have that |a

n
| < ε. Hence, by definition, {a

n
} → 0.

It is now easy to demonstrate the general pinching theorem, by referring our theorem
back to this result (iii): assume that {a

n
}, {b

n
}, and {c

n
} are sequences with a

n
≤ b

n
≤ c

n

for every n and that {a
n
} → L and {c

n
} → L.

Merely define the sequences {b
n
− a

n
}, {c

n
− a

n
}, and invoke (iii).

Definition: monotone increasing: Let {a
n
} → a be a sequence of real numbers. If

a
n+1 ≥ a

n
for every n ∈ IN, the sequence is monotone increasing. If a

n+1 > a
n

for every
n ∈ IN, the sequence is strictly monotone increasing.

Observe: The definitions of monotone decreasing and strictly monotone decreasing are the
obvious parallels.

Theorem 2-6: A bounded monotone sequence converges.

Corollary 2-6:

(i) A monotone increasing sequence either converges or diverges to ∞.

(ii) A monotone decreasing sequence either converges or diverges to −∞.

Theorem 2-7: Let A
n

= [a
n
, b

n
] be a sequence of intervals such that A

n
⊃ A

n+1 for n ∈ IN.
Suppose that lim

n→∞

(b
n
− a

n
) = 0. Then there is a real number p for which

∩∞

n=1An
= {p}.

Proof: We’re expecting that lim
n→∞

a
n

= lim
n→∞

b
n

= p. Now we’ll show that.

Both sequences {a
n
} and {a

n
} are bounded (they are bounded by the first set A1: a1 ≤

a
n+1 ≤ b

n+1 ≤ b1), and both are monotone: hence, by Theorem 2-6, they are both convergent.
Since

lim
n→∞

(b
n
− a

n
) = 0

we use Theorem 2-4 to conclude that

lim
n→∞

b
n
− lim

n→∞

a
n

= 0

or that ∃p ∈ IR such that lim
n→∞

a
n

= lim
n→∞

b
n

= p. The proof of Theorem 2-6 shows that the

limit of a bounded monotone increasing sequence is the lub of the sequence. (Similarly a
decreasing bounded sequence approaches its glb – Problem 13, p. 47).
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Now to show that ∀n ∈ IN, p ∈ A
n

(by contradiction). Suppose p /∈ A
n

for some n, and,
WLOG, p < a

n
. Then p 6= lub of monotone increasing sequence {a

n
}, since p < a

n
. This is

a contradiction, so p ∈ A
n
∀n ∈ IN.

Now to show that p is the only thing in the infinite intersection (by contradiction).
Assume not: that there is another real q in every A

n
. WLOG assume that q < p. Since

lim
n→∞

a
n

= p, we know by the definition of limit that ∀ε > 0, ∃N(ε) ∈ IN such that if

n > N(ε), then |a
n
− p| < ε. Take ε = p − q. Then ∃N(ε) ∈ IN such that if n > N(ε), then

|a
n
− p| < p − q. Written as an inequality, this says that

q − p < a
n
− p < p − q

or that q < a
n
. That is a contradiction: q /∈ A

n
and q ∈ A

n
. Hence p is the unique element

of the infinite intersection.

Definition: nested sets: A sequence of sets {A
n
} such that A

n
⊃ A

n+1 is called a nested

sequence of sets.

Theorem 2-8: Let A be a nonempty set of real numbers that is bounded above. Then
there is a sequence of numbers {x

n
} such that

(i) x
n
∈ A, n ∈ IN

(ii) lim x
n

= lub(A).

Proof: (outline) If α ≡ lub(A) ∈ A, then the sequence is obvious: choose x
n

= α, ∀n. If
α ≡ lub(A) /∈ A, then, by Theorem 1-16, we know that for every ε > 0, the interval (α−ε, α)
contains an infinite number of points of A. Choose a sequence of ε

n
that approach zero (e.g.

ε
n

=
1

n
), and take one of the (infinite number of) elements of the sequence within ε

n
of α.

Observe: An analogous result holds for the glb(A).

Definition: Cauchy sequence: A sequence {a
n
} is called a Cauchy sequence if, ∀ε > 0,

∃N(ε) ∈ IN such that if n, m > N(ε), n, m ∈ IN, then

|a
n
− a

m
| < ε.

Theorem 2-9: A sequence converges if and only if it is a Cauchy sequence.

Note: It’s not obvious that a Cauchy sequence should imply convergence: it does says that
the terms are getting within ε of each other, no matter how small ε, but you might imagine
that, although the terms are getting closer together, they’re drifting around, not actually
approaching a fixed limit. If you did imagine that, you’d be wrong – that’s what the theorem
says, at any rate!

The proof of this theorem is found in the exercises for section 2.3....
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