Last Time | Next Time |
"The Maya also made their own very accurate measurement of the solar year, putting it at 365.242 days. The latest computations give us the figure of 365.242198: so the Maya were actually far nearer the true figure than the current Western calendar of 365 days (which, with leap years, gives a true average of 365.2425)." From The Universal History of Numbers, by George Ifrah.
(I underline "distinct" because you cannot repeat powers: otherwise you could write, for example,
1 | 321 | |
2 | ||
4 | ||
8 | ||
16 | ||
32 | ||
64 | ||
128 | Too big! |
Now add up those rows marked with an asterix (*), and you'll get the answer (35952).
Let's look at the simplest example imaginable: divide 32 by 8. We can actually do it by Egyptian multiplication, since 8 divides into 32 evenly:
1 | 8 | |
2 | 16 | |
4 | 32 | * |
So the answer is 4 (how do we get 4?)
1 | 8 | * |
2 | 16 | |
4 | 32 | * |
So the answer is 5 (how do we get 5?)
Let's look at an example: divide 35 by 8.
In a way we turn it into a multiplication problem: what times 8 equals 35? So we know the 8, and use it to "double" -- but then to "halve", when 8 won't go evenly into 35:
1 | 8 | |
2 | 16 | |
4 | 32 | * |
1/2 | 4 | |
1/4 | 2 | * |
1/8 | 1 | * |
So the answer is 4+1/4+1/8
(Where have we seen those fractions before? Look to the Eye of Horus!)
But they didn't restrict themselves to "halving", as our next example shows. Divide 6 by 7:
1 | 7 | |
1/2 | 3+1/2 | * |
1/4 | 1+1/2+1/4 | * |
1/7 | 1 | |
1/14 | 1/2 | * |
1/28 | 1/4 | * |
So the answer is 1/2+1/4+1/14+1/28
Dominic Olivastro, "Ancient Puzzles", suggests a third reason why this use of unary fractions is good. Consider the problem Ahmes poses of dividing 3 loaves of bread between 5 people. We would answer "each person gets 3/5-ths of a loaf". If we implemented our solution, we might then cut 2 loaves into 3/5 | 2/5 pieces, with bread for 3 people; then cut one of the smaller pieces in half, giving the other two people 2/5 + 1/5 pieces. Mathematically acceptable, but try this with kids and they will insist that it is not an even division. Some have larger pieces, some have smaller. Ahmes would calculate 3/5 as : 3/5 = ()3 + ()5 + ()15 [ = 1/3 + 1/5 + 1/15 ] Now cut one loaf into fifths, cut two more into thirds, then take one of the 1/3-rd pieces and cut it into 5-ths (for the 1/15-th pieces), and you can now distribute everyone's 3/5-ths share in a way that _looks_ equal, since they will have exactly the same size pieces. (And no, I don't want to argue about the crust.)
(Think about what the answer means, in terms of bread.)