
Log Functions and Exponentials

One of the most important jobs logs do is help us to model real-world phenomena, or variables.
Suppose that this variable f is modelled by an exponential:

f(x) = αeβx

Note: this is equivalent to the form
f(x) = em+bx

the composition of an exponential function and an affine (aka “linear”) function. We can see this
by using properties of exponents1:

f(x) = em+bx = emebx
≡ αeβx,

where α = em and β = b.
Now that we’ve got that out of the way, if we use logs to transform f by taking logs of both

sides, we get
ln(f(x)) = ln(αeβx)

and we use properties of logs2 to rewrite that as

ln(f(x)) = ln(α) + ln(eβx) = ln(α) + βx

At right we have a linear function (ln(α) is just an ugly constant): at left is the log of f . We
don’t actually know f , but we have collected some data for f , so if we log-transform that data, it
should appear linear. If it does, then we might have been right about the variable f – maybe an
exponential model is the appropriate one.

Figure 1: Source: http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt. “Best
estimate for absolute global mean for 1951-1980 is 14.0 deg-C or 57.2 deg-F, so add that to the
temperature change if you want to use an absolute scale.” At left, the original time-series; at right
is smoothed data (averaged over 12 months).
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1Those are so important! Please memorize them!
2Memorize those too!

http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt


Figure 2: log-transformed data (left) is modelled with a linear function; at right is the original
(smoothed) data, modelled using an exponential. Below all we have the predictions based on our
model.
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a. What do you think of the linear fit? Is it “linear enough” to assert the exponential model?

b. This from the IPCC (Intergovernmental Panel on Climate Change) summary report, 20073:
“There is medium confidence that approximately 20 to 30% of species assessed so far are likely
to be at increased risk of extinction if increases in global average warming exceed 1.5 to 2.50C
(relative to 1980-1999). As global average temperature increase exceeds about 3.50C, model
projections suggest significant extinctions (40 to 70% of species assessed) around the globe.”

Comment, based on our work here.

3http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf

http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf


Now, consider this problem. Two points are given: (1,6) and (3,24). These points lie on an
exponential graph of the function of form f(x) = Cax.

a. Find C and a directly.

b. Find C and a by first taking logs (use the data!), and fitting a straight line.


