
Section Summary: Taylor and MacLaurin Series

1 Definitions

Taylor series of f about a (assuming f has derivatives of all orders):

f(x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n

The nth-degree Taylor polynomial of f at a:

Tn(x) =
n∑

i=0

f (i)(a)

i!
(x − a)i

Then Rn(x) = f(x)−Tn(x) is the called the remainder of the Taylor series.
Maclaurin series: a Taylor series centered about x = 0:

f(x) =
∞∑

n=0

f (n)(0)

n!
xn

2 Theorems

If f has a power series representation (expansion) at a, that is, if

f(x) =
∞∑

n=0

cn(x − a)n |x − a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!

If f(x) = Tn(x) + Rn(x), and

lim
n→∞

Rn(x) = 0

for |x− a| < R, then f is equal to the sum of its Taylor series on the interval
|x − a| < R.
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Taylor’s inequality: If |f (n+1)(x)| ≤ M for |x − a| ≤ d, then the re-
mainder Rn(x) of the Taylor series satisfies the inequality

|Rn(x)| ≤
M

(n + 1)!
|x − a|n+1 for |x − a| ≤ d

3 Properties, Hints, etc.

Power series can be added and subtracted just like polynomials (but be aware
of possibly different intervals of convergence). While they can also be multi-
plied and divided like polynomials, they’re quite cumbersome to manipulate
this way. We’re often only interested in the first few terms, however, which
makes this an occasionally useful option.

Some important Maclaurin series:

1

1 − x
=

∞∑

n=0

xn (−1, 1)

ex =
∞∑

n=0

xn

n!
(−∞,∞)

sin(x) =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
(−∞,∞)

cos(x) =
∞∑

n=0

(−1)n x2n

(2n)!
(−∞,∞)

tan−1(x) =
∞∑

n=0

(−1)n x2n+1

2n + 1
[−1, 1]

4 Summary

This is the crowning glory of sequences and series. This material clarifies
statements like these: “sin(x) ≈ x about x = 0.” Or, equivalently,

lim
x→0

sin(x)

x
= 1
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This type of analysis is clear once Taylor series are understood.
We can obtain Taylor series by term-by-term differentiation: suppose that

f(x) =
∞∑

n=0

cnx
n

with radius of convergence R > 0. Then f(0) = c0 (the series is easy to
evaluate at x = 0!). We’ve seen that we can differentiate series, so, provided
f is differentiable,

f
′

(x) =
∞∑

n=1

cnnxn−1

Again, evaluate at 0: f
′

(0) = c1 · 1 = c1. So c1 = f
′

(0).
Continuing,

f
′′

(x) =
∞∑

n=2

cnn(n − 1)xn−2

Again, evaluate at 0: f ′′(0) = c2 · 2 · 1 = 2c2. So c2 = f ′′(0)
2

.
In general,

cn =
f (n)(0)

n!
and

f(x) =
∞∑

n=0

f (n)(0)

n!
xn

This is the so-called “Maclaurin series” (a special type of Taylor series, ex-
panded about x = 0).

We can also obtain Taylor series by building up: the objective is to ap-
proximate a function about an abscissa a as well as possible by successively
larger polynomials. If you only had a constant function to work with, you’d
choose p(x) = c = f(a). If you had a linear function to work with, you’d
choose p(x) = ax + b = f

′

(a)(x − a) + f(a) (check that this gets both the
function value right, and the slope right). Continuing in this fashion, you’d
get

f
′′

(a)

2
(x − a)2 + f

′

(a)(x − a) + f(a)

f
′′′

(a)

3!
(x − a)3 +

f
′′

(a)

2
(x − a)2 + f

′

(a)(x − a) + f(a)

etc.
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