
MAT360 Project 2 (Spring 2015)

Name:

Directions: While you may collaborate and discuss with others, your computer work and report should be **your own work**. You may use whatever software you wish for the calculations. Your

work should be summarized in a typed report. Calculations by hand may be appended, but the summary should be nice.

Problem 1. Consider the following graph of the function $f(x) = xe^x$:

Using four different starting points for Newton's method with qualitatively different behavior for the iteration (labelling each on the graph), demonstrate the following behavior numerically:

- a. A point where Newton's method converges monotonically to the root;
- b. A point where Newton's method will converge non-monotonically;
- c. A point where Newton's method will "blow up"; and
- d. A point where Newton's method will monotonically flee the root.

Can you characterize "basins" [a, b] along the real number line where each of these behaviors will occur? For example, [a, b] such that $x \in [a, b]$ implies monotonic convergence.

Problem 2. Consider f(x) = (x+2)(x+1)x(x-1)(x-2)

- a. To which root will bisection converge, if we start with the interval $\left[-\sqrt{2}, \pi/2\right]$? How many iterations must be carried out to know that?
- b. Characterize intervals which contain multiple roots, yet which result in the root x = 0 being chosen by bisection. [You can use symmetry to make your work a little lighter.]

You might want to define and plot a function of two variables, to give an experimental answer in some cases, and to guide your thinking.

Problem 3. Consider the following set of candidate fixed point functions g(x) to solve for the root of $f(x) = e^x - \frac{1}{x^2}$. Compare them, with numerical calculations, and rank them by their convergence if we begin in the neighborhood of the root (around r = 0.703467422). Consider by "neighborhood" the interval [.25, 1.5].

$$g_1(x) = x^3 e^x$$

$$g_2(x) = -2\ln(|x|)$$

$$g_3(x) = x \frac{x^2(x-1)e^x + 3}{x^3 e^x + 2}$$

$$g_4(x) = e^{\frac{-x}{2}}$$

Do their rates of convergence meet theoretical expectations?

Problem 4. Compare Newton's method, the Secant method, bisection, and Muller's method on Problem 3. Make a sensible choice of intervals, starting values, etc. so as to make a fair comparison. Compare rates of convergence.