## Section Summary: 3.7

## a. Theorems

First derivative test for absolute extreme values Suppose that c is a critical number of a continuous function f defined on an interval I.

- If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then f(c) is the absolute maximum of f on I.
- If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then f(c) is the absolute minimum of f on I.

## b. Properties/Tricks/Hints/Etc.

Steps in solving optimization problems:

- Understand the problem read carefully: what is the unknown? What are the given quantities? What are the given conditions? What do we seek?
- Draw an appropriate, complete diagram. (This is the most important step!)
- Introduce suitable notation. Use symbols that represent the quantities of interest (e.g. h for height, v for velocity), rather than just x or y.
- Express the dependent variable as an equation in terms of the independent variable(s).
- If there is more than one independent variable, use the relationships among the variables and conditions to solve for the others in terms of a single variable, if possible.
- Find the desired absolute minimum or maximum.

## c. Summary

This section is the heart of calculus for me. There is something wonderful about being able to determine the best shape of a can to minimize the use of materials, or to discover that if you want Fido to have the biggest pen area given a rectangular fence, then it should be square. This is marvellous stuff.

Take to heart the recommendations for solving these optimization problems (in particular, **draw a picture**). Word problems are notoriously difficult, so turn them into picture problems to make them easier to solve.