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The proposal is made to consider a paired-associate item as becoming 
conditioned to its correct response in all-or-none fashion, and that prior to 
this conditioning event the subject guesses responses at random to an un- 
learned item. These simple assumptions enable the derivation of an extensive 
number of predictions about paired-associate learning. The predictions 
compare very favorably with the results of an experiment discussed below. 

This report describes an elementary model for the stimulus-response 
association process in paired-associate learning, displays an extensive number 
of derivations from the axioms of the model, and describes the agreement 
of the model with some experimental results. Paired-associate learning (PAL) 
as it is frequently studied involves two, at  least conceptually, distinct proc- 
esses: the learning of relevant responses to the general situation (e.g., as 
in nonsense syllable-syllable pairs), and the associative "hook-up" of these 
relevant responses to their appropriate stimulus members. In the belief 
tha t  fractionating experimental problems leads to quicker understanding of 
the processes involved, this article is directed to only the second process 
listed above, the associative hook-up of relevant responses to their respective 
stimuli. The hope is tha t  once this process is bet ter  understood the other 
problems, having to do with the learning of integrated response units in the 
situation, will become more amenable to experimental at tack.  

The way in which the response learning requirement was eliminated in 
the present experiments was to (i) use responses familiar to the subject, 
and (ii) inform him of the response alternatives before the experiment began. 
For  these purposes, it was found that  the first several integers (1, 2, . .  • , N) 
worked admirably. Other responses meeting the above requirements could 
have been used, provided precautions were taken to prevent the subject 
from forgetting some of the available responses during the course of the 
experiment. The other procedural peculiarity of these experiments was the 
requirement tha t  the subject make a relevant response to each stimulus 
i tem on each trial. This procedure necessarily involved permitting the subject 
to control his exposure t ime to each stimulus. 

If  there are K items in the list, then a " tr ial"  will be defined as one cycle 
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of presentation of each of the K items, the order of appearance of the items 
being randomized over successive trials. Considering only a single stimulus 
item for a given subject, we may categorize his responses as correct or in- 
.correct (or, 0 or 1, as we shaft use later); over successive trials there will 
be some particular sequence of l 's and O's to that item. Stripped to its barest 
.essentials, the job for a theory of PAL is to describe and account for the 
general characteristics of these sequences. The best lob of description, of 
course, would be to reproduce the original sequences. Theories, as economic 
abstractions, do not perform this task but they can provide general descrip- 
tions (e.g., the trial number of the second success) about a sample of sequences 
allegedly generated under the same process laws. Obviously, models that  
deliver predictions about many different aspects of such sequences are 
preferable to less tractable models, since each prediction provides an op- 
port, unity to test the adequacy of the model. In turn, the number of predictions 
derivable in closed form from a model reflects to a large extent the sim- 
plicity of the assumptions used to represent the process under consideration. 
The assumptions of the model to be presented appear to achieve almost 
maximal simplicity for a model about learning; accordingly, it is possible 
to derive in closed form an extensive number of predictions (theorems) 
referring to properties of the response sequences obtained from the learning 
subject. 

The model to be described is derived within the general framework of 
a stimulus sampling theory of learning [9] but with the assumption that 
each experimental source of stimulation (i.e., the stimulus member of a 
paired-associate item) may be represented by a small number of stimulus 
components or elements. The original investigation of small-element learning 
models began with a paper by Estes [10] and has been carried on by a number 
of people. Suppes and Atkinson [15] give an extensive development of such 
models and show their application to a variety of learning experiments. 
In the init,ial development of stimulus sampling theory [8, 9] it was assumed 
that the population of stimulus components from which the subject sampled 
on each trial was large. Since conditioning was assumed to take place only 
with respect to the sampled elements, the model implied relatively gradual 
changes over trials in the proportion of conditioned elements in the population 
and hence in response probability. Recent developments with small-element 
models differ in that the population of stimulus elements is assumed to be 
small (e.g., one or two elements) so that. response probability m~y take on 
only a few values over the course of a learning experiment. The common 
assumption is that only one of these stimulus elements may be sampled 
on each trial and that %he sampled clement becomes conditioned to the 
reinforced response with probability c on every trial. Besides considerable 
simplification of the mathematics of stimulus sampling theory, the small- 
element assumptions deliver some predictions which differ markedly from 
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the large-element (i.e., linear) model assumptions; some of these differences 
are noted and will be compared with data. 

The basic notion of the present model is that each stimulus item in 
the list of paired associates may be represented by exactly one stimulus 
element within the model and that the correct response to that, item becomes 
associated in all-or-none fashion. Considering only a single item, it can be 
in either of two "states" on each trial: conditioned or not conditioned to 
the correct response. The effect of a reinforced trial (i.e., evoking the correct 
response in the presence of the stimulus item) is to provide an opportunity 
for the item to become conditioned. The single parameter of the mode[ is c, 
the probability that an unconditioned item will become conditioned as the 
result of a reinforced trial. All items begin in the unconditioned state; the 
effect of continued reinforced trials is to provide repeated opportunities for 
the item to become conditioned. 

If the item has become conditioned, then continued reinforcements of 
the same correct response will ensure that  the item remains conditioned. 
The probability of the correc~ response when the item is conditioned is 
unity. The probability of the correct response when the item is not con- 
ditioned depends upon the exact experimental procedure used. In experi- 
ments by the writer, the subjects were told the N responses (integers 1, 
2, • • • , N) available to them and were told to respond on every trial regard- 
less of whether they knew the correct number. If the N numbers occur equally 
often as the to-be-learned responses to the items, then the probability that 
the subject will guess correctly on an unlearned item is 1/N; correspondingly, 
his probability of guessing incorrectly is 1 -- (1/1¥). Our discussion of the 
one-element model is oriented specifically towards such an experimental 
procedure. 

Because of the way the model is formulated, there is a partial deter- 
minism between the response sequence and the sequence of conditioning 
states. Specifically, if the subject responds incorrectly to a given item on 
trial n, then that item was not in the "conditioned" state on trial n. This 
feature is very helpful in deriving a number of the theorems about errors. 
If the subject responds correctly, however, then we cannot uniquely specify 
his state of conditioning, since he may have guessed correctly. Thus, it 
is not a consequence of the model that the subject's first correct response 
will be followed with probability one by correct responses on subsequent 
trials. 

After working with the latter model for some time, it came to the writer's 
attention that Bush and Mosteller [6] had previously published a model 
for "one-trial learning" that is almost identical to the one stated above. 
Thus, there can be no pretense to priority in the current folznulation of 
these elementary notions about the learning process. The present account 
does go beyond the abbreviated discussion by Bush and Mosteller in deriving 
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a large number of predictions from the model and in applying the theory 
with some success to verbal learning. Although their approach and the 
present one differ slightly in assumptions about initial conditions, the deriva- 
tional techniques are sufficiently similar so that theorems can be transposed, 
with appropriate modifications, from one system to the other. [According 
to the Bush and Mosteller assumptions, a proportion c of the response se- 
quences (subjects or items) begin in the conditioned state, and this same 
value of c is assumed to be the learning rate constant.] 

Throughout the following sections, the predictions derived from the 
model will be compared with data from an experiment which now will be 
described. Twenty-nine subjects learned a list of ten items to a criterion of 
two consecutive errorless cycles. The stimuli were different pairs of consonant 
letters; the responses were the integers 1 and 2, each response assigned 
as correct to a randomly selected five stimuli for each subject. A response 
was obtained from the subject on each presentation of an item and he was 
informed of the correct answer following his response. The deck of ten stimulus 
cards was shuffled between trials to randomize the presentation order of 
the stimuli. 

Axioms and Theorems about Total Errors 

Axioms 

1. Each item may be represented by a single stimulus element which is 
sampled on every trial. 

2. This element is in either of two conditioning states: C1 (conditioned to 
the correct response) or Co (not conditioned). 

3. On each reinforced trial, the probability of a transition from Co to CI 
is a constant, c, the probability of a transition from C~ to CI is one. 

4. I f  the element is in state C, then the probability of a correct response 
is one; if  the element is in state Co , then the probability of a correct 
response is l /N ,  where N is the number of response alternatives. 

5. The probability c is independent of the trial number and the outcomes 
of preceding trials. 

The trial to trial sequence of conditioning states forms a Markov chain, 
with C1 being an absorbing state. The transition probabilities are given in 
the following matrix. 

(1) P = 

CI Co 

C, 1 0 

Co c 1 - c. 



GORDON H, BOWER 259 

I t  is easy to show that  the n th  power of the transition matrix is 

(2) P~ = 

Ci 

C~ 1 

Co 1 - (1 - c) ~ 

Co 

0 

(1  - c) '~. 

We explicitly assume that  all items start  out in state Co (i.e., are not  con- 
ditioned initially). Thus, starting out in state Co , the probability of still 
being in state Co after n reinforced trials is (1 - c) ~, which approaches zero 
as n becomes large. Thus, for c > 0, with probability one the process will 
eventually end in conditioning state C, (i.e., will become conditioned). 

For each item, define a sequence of response random variables, x~ , 
which take on the value 1 if an error occurs on trial n, or the value 0 if a 
success occurs on n. From the axioms, the conditional probabilities of an 
error given states C~ or Co at  the beginning of trial n are 

1 
(3) ~ {xn = t l C,,~} = 0 and Pr {x~ = 1 I Co,,~} = 1 - ~ -  

To obtain the average probability of an error on the n~h trial, qn, multiply 
these conditional probabilities by the probabilities of being in C, or Co , 
respectively, a t  the s~art of trial n: 

(4) q. = Pr  {x. = 1} = Pr  {x. = 1 ] C,,.} Pr  {C,,.} 

-t- Pr {x~ = 1 I Co..} Pr  {Co,.} 

=0 -~ (1 -  N)(1- c) ~-'-- (1 -  N)(I --c)'-'. 
The expected total  number of errors, ul , before perfect learning is given by  

1 

(5) u, = E  x~ = Pr  {xn= 1} = 1 - -  ( 1 - - c ) ' - '  = N _..._* 

n = l  r*=l  I C 

The expected total  errors per item serves as a stable estimator of c. 
For  the experiment described above with N = 2, the average number of 
errors per item was 1.45. Equating u~ in (5) to 1.45, the c value obtained 
is .344. This estimate of c will be fixed throughout the remaining discussion 
of these data. Using this value of c in (4), the predicted learning curve in 
Fig. 1 is obtained. 

In the expression for u~, all errors are weighted equally. I t  is also possible 
to derive expressions for various weighted sums of errors, as Bush and Stern- 
berg [7] have shown for the linear model. The results here are identical wi¢h 
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their results. Three examples of the expectation of weighted error sums 
are given below. 

1 

(6) E nx,  n 1 1 c) "-1 N ul 
n ~ l  C 

( i)( 
0o 

Xn ~ (8) E[.~'~=l(n 1),] ( 1 - -  N)  . ~  (l - c)" = (1 1 ' 1 - ¢  - -  = m !  - ~ ] e  . 

I t  is possible to obtain the distribution of the total number of errors on 
each item. This distribution was derived by Bush and Mosteller; their result 
is readily translated into the terms of the Current approach to the theolw. 
If we let T represent the total  number of errors  (to perfect learning) on a 
single item, the probability distribution of T is 

i b /N  for k = 0  

(9) Pr {T = k} = ].b(1 -- b) ~ 
4or k >_ 1, 

[ 1  C 

where 
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The mean of T was derived as ul in (5); the variance of T is given by  

(10) Var (T) = ul -k (1 -- 2c)u~ . 

The predicted and obtained distributions of T are shown in Fig. 2. 

Sequent ial  Propert ies  of  the Mode l  

Predictions about  sequential features of the data  m a y  be obtained b y  
considering runs of errors. To date only mean values of the various run 
distributions have been derived; higher moments  will not  be discussed. Let  
rj represent the number  of error runs of length j in an infinite number  of  
trials; we seek the expectation of r~ . For these purposes, it is convenient  
to define another  random variable, us , which counts the number  of j-tuples 
of errors tha t  occur in an infinite sequence of trials. Formally,  define ui a s  

(11) ui = ~ x,,xn+l . . "  xn+j-1 for j --- 1, 2, - . . .  
n = l  

The product,  x,~x,+l . . .  x~+j_l , has the value one only when j consecutive 
errors occur start ing with the error on t r im n. I t  m a y  be seen tha t  u~ is ius t  
the total  number  of errors. 
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TO make  clear how the u~ are being counted and their  relation to the r~ , 
consider the possible sequence 

1111100110001101000 . . .  (all the rest zeros). 

For  this sequence, 

u~ = 10, u2 = 6, u3 = 3, u4 = 2, u~ = 1; 

r, = 1, r2 = 2, r3 = r4 = 0, r5 = 1, R = ] ~ r ;  = 4. 

R is the total" number  of error runs. In  an excellent article, Bush [5] has 
shown tha t  the ri can be expressed as linear combinations of the u~ . In  
particular,  

(12) ri = u~ --  2uj+l + ui+~ , 

a n d  

{13) R = ~ r ~  = u l - - u 2 .  

Hav ing  expressed the r~ in te rms  of the u~,  we now turn  to deriving f rom 
the model the expected value of ui • We proceed as follows: 

<14) E ( u i )  = E x , , . x . + l  . . . .  x .+~- i  = Pr {x. = 1} 

• ~ {x~+l = I Ix .  = 1} Pr {xo+~ = 1 I x . 'x .+ ,  = 1} - . -  

• P r  {x .+~_~ = 1 [ x ~ . x . + l  . . -  x . + ~ _ ~  = 1 } .  

Because of the Markovian  properties of the model, the lengthy conditional 
probabili t ies on the r ight-hand side can be simplified, viz., 

(15) P r  {x .+,  = l I x .  = 1, x.+, = 1 , . . -  , x~+,_l = 1} 

= t'r {x.+, = 1 I z .+ , - ,  = 1}. 

T h a t  is, if the subject made an error on the preceding trial, then tha t  is all 
the information there is to be ex t rac ted  f rom the entire preceding sequence 
of responses. His  error tells us tha t  his conditioning s tate  on the preceding 
trial  was Co ; the probabi l i ty  of an error on the current  tr ial  is then  

(16) Pr {x.+, = 1 t x .  = 1} 

= c . o + ( 1  - ~ ) ( 1 -  N )  = (1 - c)(1 - - ~ )  = ~ ,  
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and, moreover, ~his holds for any trial number n. Thus, using relations (15) 
and (16), the equation for u; becomes 

(17) E(ui)  = ~ P r  {x~ = 1} Pr {X~+l = 1 J x~ = 1} . . .  

• P r  {x.+i-~ = 1 I x,,÷~-~ = 1} 

(2 t )  

Therefore, 

(22) E(c~.~) = ( 1 -  N ) ( 1 - c ) k ( 1 -  N ) ( 1 -  c) "-~. 

A convenient statistic for comparison with data  is obtained by taking the 

--  )_.~Pr {x~ = 1} ~ . . . .  ~ .  

(i--1) times 

E(U~) = oJ -1 ~ Pr {x~ = 1} = ul~ i-1 
n=l 

Wi~h these values in hand, now calculate R and r; , using relations 
(12) and (13). 

(18) E(R)  = E(ul) - E(u~) = u1(1 -- a), 

(19) E(r~) = E(u~)  - 2 E ( u ~ , )  + E(u~÷~) = u1(1 - ~ ) ~ ; - '  

= R(1  - a ) a ; - '  

Another useful stammary of sequential properties in the data  is the 
extent to which un error oll trial n tends to be followed by an error k trials 
later, without regard to what responses intervene between trials n and n -b k. 
Define ck.. as x,,.x,,+~ ; this expression will have the value 1 only if errors 
occur on both trials n and n + k. I t  may be noted tha t  ck,. summarizes 
the same features as does an autocorrelation of lag k. The expectation of 
ck,~ is 

(20) E(c~,~) = E(x~.x~÷~) = E(x~+~ [x~) .E(x~)  

= Pr {x~÷k = 1 I x~ = 1~ Pr  {x~ = 1} .  

To find the conditional probability above, note tha t  for an error to occur 
on trial n + / c  it must be the case that  conditioning has failed to occur during 
the intervening/c trials, and moreover that  the subject guesses incorrectly 
on trial n + / c .  The probability of this joint event is 

Pr {x,~+k = l , x . =  1} = (1 -- c)k(1 -- N ) .  
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"autocorrelat ion" of x~ and x,,+~ over all trials n of the experiment. Defining 
ck as the mean value of this random variable, 

(23) ck = E x~x,,+~ = E(ck.,,) = ul 1 -- 1 -- c) ~ 

for k = 1 , 2 , 3 , - - -  . 

Predicted and observed values of ci , c~ , and c3 are given in Table  1. 
I t  is a simple ma t t e r  ¢o construct  other statistics which capture various 

features of the sequential dependencies in the response sequence. Such 
statistics are expressible as various sums and /o r  products  of the x, . One 
illustration will be provided here to demonstra te  the general derivational 
techniques. In  order to predict the average number  of alternations of suc- 
cesses and failures that  occur over the response sequence, define a random 
variable As which will count an al ternation between trials n and n -t- 1. 
Hence,  

(24) A~ = (1 - xOx,+~ + x,(1 - x,+l). 

I t  will be noted tha t  A,  takes on the value 1 either if a success occurs on 
trim n and a failure on trial n -}- 1 or if a failure occurs on n and a success 
on n -t- 1. Mult iplying out  and taking the expectation of A ,  yields 

(25) E ( A , )  = ~ (1 -- -]- ( 1  - -  a )  1 - ( 1  - -  . 
O~ 

The average of the sum of An over trials is 

(26) A -~ E[~']  A,~] = u , [ e  + 2 ( 1 N  c ) ] .  

Errors during Various Parts of Learning 

In  this section we derive the distribution of the number  of errors betwee~ 
the /c th  and (k -}- ][)st success and also of the number  of errors between the  
kth and (k -t- 2)nd success. As special cases of these general results, for/c = 0 
we obtain the distributions of errors before the first and before the second 
success. The  methods employed in these derivations are general so t ha t  the  
distribution of errors between the ]cth and (k + m) th  success could be ob-  
tained, the sole l imitation being tha t  the expressions get progressively more  
cumbersome as m is increased. 

Consider first the distribution of the number  of errors occurring between 
the kth and (k q- l)st success. Let Jk be this random variable; it can take 
on the values 0, i, 2, ... of the non-negative integers. Errors following the 
kth success can occur only if the kth success itself came about by guessing 
(rather than via prior conditioning). Thus, the probability that the /~th 
success occurred by guessing (call it gk) will play a central role in the expres- 
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sion for  the  d is t r ibut ion of Jk  • T o  forego for the  m o m e n t  the  der iva t ion  of gk, 
wr i te  the  d is t r ibut ion of J~ as 

(27) P r  {J~ = i} = ~1 --  gk~ for i = 0 

t g k ( l - - a ) d  for i >  0. 

F o r  example,  the  p robab i l i ty  of three  errors  be tween  the  /cth success and  
the  nex t  one is g iven b y  the  jo int  p robab i l i ty  of (i) the  k th  success occurred  
b y  guessing, (ii) condit ioning failed to  occur  a t  the  end of trials,  k, /a q- 1, 
a n d  k q- 2 and incorrect  guesses occurred on tr ials  k q- 1, k q- 2, and  k q- 3, 
the  p robab i l i ty  of this  joint  event  being (1 - c) a (1 - 1 / N )  a -- oe a, and  
(iii) given t h a t  the  elemen~ was  not  condi t ioned a t  the  s t a r t  of t r ia l  k q- 3, 
a correct  response occurs on t r ia l  k q- 4 wi th  p robab i l i ty  1 -- a.  T o  obta in  
the  t e r m  for  Jk = 0, note  t h a t  no errors could occur  ei ther  if the kth  success 
occur red  via prior  condi t ioning (with p robab i l i ty  1 - gO or, hav ing  guessed 
the  kth  success, a success occurs on the  nex t  t r ia l  wi th  p robabi l i ty  1 - a.  
T h e  sum of these two terms,  1 - gk and  gk(1 - a),  gives the p robab i l i ty  
t h a t  Jk  = 0. 

F r o m  the dis t r ibut ion in (27) one obta ins  the  m e a n  and var iance  of Jk • 

agk = o~gk_5 [1 + a(1 -- gk)]. (28) E(J , : )  = ~ _---a , Var (J~) (1 - a)" 

T h e  task  now is to der ive g~, the  p robab i l i ty  t h a t  the  kth  success occurs 
b y  guessing. Consider  g~ , the  p robab i l i ty  t h a t  the  first success occurs  b y  
guessing.  I t  is 

(29) g, = ~ -F --  ~ q- --  -- c) 2 ~ -F " ' -  

= ! ~ d  = 1 . 
N joo N(1 - a) 

T h a t  is, the  subjec t  guesses correc t ly  on the  first  t r ial  wi th  p robab i l i ty  1 / N ;  

he  m a y  fail  there  so the  i t em does no t  become  condi t ioned and  he guesses 
cor rec t ly  on the  second tr ial ,  and  so on. I t  can  be  shown for  k > 1 that, a 
general  recursion holds for  g, , viz., 

(30) g~ -- gk_~(1 - c) q- a ~= -[- ~ q- . . . .  gk-l(1 - c)g~ . 

T h a t  is, for  the k th  success to  occur  b y  guessing, i t  mus t  be the case t h a t  
(i) the  (k - 1)st success occurred b y  guessing, (ii) condit ioning failed to  
occur  on the  tr ial  of the  (k - 1)st success, and  (iii) s t a r t ing  out  no t  con- 
d i t ioned on the  nex t  trial ,  the  next  correct  response also occurs  b y  guessing, 
wi th  p robab i l i ty  g~ . 
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Equation (30) is a standard linear difference equation having the solution 

(31) gk (1 ,~- lk  ( c o~)k-'" = - - c )  gl = gl 1 1 - -  

Since c < 1 - a, it follows that  gk decreases exponentially with k. This 
result is intuitively clear: the tenth success is less likely to occur by guessing 
than is, say, the second success. Corresponding to the decrease in g~ , the 
average errors between the kth and (k -~ 1)st success is decreasing expo- 
nentiaUy over k, as (28) shows. 

We have been considering J~ for k > 0. The interpretation of Jo is the 
number of errors before the first success. I t  is convenient to define go as 
1/(I  - c), although go itseff has no physical interpretation. Defining go 
in this way, then the distribution of Jo , the errors before the first success, 
is given by (27). The distribution of Jo has more intuitive appeal when 
written as 

( ! (32) Pr {Jo = i} = N 

although formally it is the same as (27)  with go = 1/(1 - c). 
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To illustrate the fit of the model to data, the distribution of the number  
of errors before the first success is shown in Fig. 3, and the mean and standard 
error, predicted and observed, are shown in Table 1 Also, the theoretical, 
and observed distributions of J1 , the number of errors between the first 
and second success, are shown in Fig. 4. 

Using the Jk values so calculated, one obtains an expression for t he  
average errors before the kth success. If Fk is defined as the cumulative 
errors before the kth success, then the obvious recursion on the means is 

(33) E ( F k + I )  = E ( F ~ )  + E ( J k ) .  

The solution of ~his difference equation is 
k--1 k-1 

~_, gi • (34) E ( F k )  = ~,oo E ( J , )  - 1 '~ ,~o 

Substituting the values for g~ , the summation yields 

1 

1 - - N q _  [1 =g, ['- (9,(1 - c)) k- ' ]  
(35) E ( f k )  - 1 - -  a 1 - -  a 2 g,(1 --c)] 

Ot 

= u l  N c ( ]  - ~,) [g1(1 - c)] ~ - ' ,  
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E(Fk), the Expected Number of Errors Before the kth Success 

. . . . .  u ,,, 

9 

where ul is the average total errors per item as given in (5). Equation (35) 
establishes the expected result that ,  for large k, the average number of errors 
before the kth success approaches the average total  number of errors per 
item. In Fig. 5, the observed and predicted values of E(Fk) through the ninth 
success are shown. 

The distribution of the number of errors between the kth and (k ~ 2)nd 
success has been obtained and is presented here for completeness. Define Sk 
as the number of errors between the kth and (k -t- 2)nd success; it is clear 
t h a t  Sk = J~ + ,[k÷l • By specialization for k = 0, So gives the distribution 
of the number of errors before the second success. The distribution of S~ , 
which is given here without proof (see [3]), is 

c)(1 = 1 -  gk + g~[c + (1-- ~ ]  for i = O 
(36) Pr [Sk = i} = N 

r (1 C)(1 
7 

4 c  ÷ = o)(i ÷ ,)jo, for i _> 1, 

and  the first and second raw moments of the distribution are 

~g~--- I -  ~)2 2(1 c)] ,(37) E(Sk) = (1 c + # 

ag¢_~ [2(1 - a)(1 -~ 2a) - c(1 + 3a)]. E ( S ~ )  = (1 - ~)  
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The g~ are as given before. Again, defining go = 1/(1 - e), (36) gives the 
distribution of the number of errors before the second success. The observed 
and predicted distributions of So are shown in Fig. 6, and the mean and 
standard error, predicted and observed, are given in Table 1. 

The preceding derivations have been carried out  for the number of 
errors before the kth success, etc. The number of trials before the kth success 
is obviously related by a constant. Thus, the trial number of the kth success 
is the number of errors before the kth success, F~ , plus k. Changing to a 
" tr ial"  notation shifts the origin (adds a constant) but  does not affect the 
form or variance of the distribution. 

The Trial Number of the Last Failure 

Our purpose in this section is to derive the distribution of the trial 
number of the last error in an effectively infinite sequence of trials. How- 
ever, before proceeding with this derivation, it  is helpful to consider another 
statistic: the proportion of items characterized by  having no errors following 
the first success. In  the experimental data, a considerable percentage (62.8 
percent, in fact) of the i tem protocols displayed this characteristic and the 
question arose whether the model would predict such results. Let  p~ represent 
the probability tha t  a response sequence will exhibit this property of no 
errors following the first success. If  b represents the probability of no more 
errors following a correct guess, then an expression for Pl is 

(38) Pl = 1 - gl q- glb = 1 - g~(1 -- b). 
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Distribution of So, the Number of Errors Before the Second Success 



270 PSYCHOMETRIKA 

Tha t  is, a proportion 1 - -  gl of the first correct responses come about via 
prior conditioning (so no more errors will occur), while glb represents the 
probability that  the first correct response occurs by guessing but  no more 
errors occur. To complete this derivation, b, the probability tha t  no errors 
occur following a correct guess is 

, 
(39) b = c + ( !  - c ) ~ c + ( l  - c )  2 Jr . . .  

c C 

1 (1 - c )  ~ + c  
_Zr 

Tha t  is, with probability c the item was conditioned on the trial on which 
the correct guess occurred; with probability 1 - c conditioning failed to 
occur on that  trial, the subject guessed correctly on the next trial with proba- 
bility 1 / N  and the i tem became conditioned then with probabili ty c, and 
so on. This value of b is the same as tha t  used in the distribution of the 
number  of errors given in (9). 

Substituting this result for b into (38), 

(40) pt = 1 -- g,a . 

Using the estimate of c obtained earlier, the predicted p~ is .638, which 
is quit, e close to the observed proportion of .628. 
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As (40) suggests, define p,  to be the probabil i ty tha t  there are no errors 
following the kth success. Using our previous result for gk, one derives 

(41) pk = 1 - -agk = 1 - agl [g,(1 - c ) ]  ~-* 
~ + c  a + c  " 

Observed and predicted values of p~ are shown in Fig. 7. 
To determine the position of the last error, define n '  as the random 

variable representing the trial number  on which the last error occurs in an 
infinite sequence of trials. I f  no errors occur a t  all, then n '  is set equal to 
zero. The probabil i ty distribution of n '  is 

___b for k = 0  
(42) Pr {n' = k} = N 

b ( 1 - - N ) ( 1 - - c ) ~ - '  for k >  1. 

The first value is just P r  {T = 0}, which was given in (9). I f  some errors 
occur, then for the last error to occur on trial k it  must  be the case tha t  
conditioning failed to occur on the preceding k - 1 trials, an incorrect guess 
occurred on trial k, but  no errors followed that ,  with probabil i ty b. The mean 
and variance of n r are 

(43) E ( n ' )  = m -  c 2 c ' 

Var(n ' )  = m ~ -  1 - -  m • 

The observed and predicted distributions of e '  are shown in Fig. 8; the 
mean and s tandard error, observed and predicted, are given in Table 1. 

Consider now the distribution of the number  of successes tha t  intervene 
between the kth and (k A- 1)s.t error, provided tha t  a (k -4- 1)st error occurs. 
Because an error effectively "resets" the process to state Co, the distribution 
of this random variable will be independent of k and of the trial number  
on which the leading error occurs. Let  H represent the number  of intervening 
successes. The distribution of H is given by  

[1NC]; (44) Pr  { H = j }  = 1 b - -  = ( a A - c ) ( 1 - a - c ) ' '  j = 0 , 1 , 2 , . . . .  

The division by  1 - b establishes the condition tha t  a t  least one more error 
will occur. The probabil i ty tha t  the next error occurs on the very next trial 
is just (1 - c)(1 -- 1 / N )  = a ;  the probabil i ty tha t  the next response is a 
correct guess and the error occurs on the following trial is ( l /N) (1  -- c)a, 
and so on. Although the derivation of the number  of successes before the 
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first error (provided there is one) proceeds somewhat differently, the resulting 
distribution is identical to the distribution given in (44). The mean and 
variance of"H are 

1 - - q - - c  1 - - q  - - c  
(45) E ( H )  -- , Var (II)  -= 

+ c (~ + c) ~ 

The observed and predicted distributions of H are shown in Fig. 9t and the 
means and standard errors are given in Table 1. 

The preceding analyses have been carried out for the responses to a 
single i tem over trials. If  the items can be considered homogeneous in dif- 
ficulty so tha t  each learning process may  be characterized by the same c 
value, then it is possible to derive a number of predictions about, performance 
across items within a partieular trial. If there are K items, then a run through 
the list (a trial) provides a sequentially ordered sample of size K from a 
binomial population. With this eharacterization, one can then derive various 
quanti~ies of experimental interest, e.g., the probability tha t  a perfect, recita- 
t ion of the list occurs on trial n, the average number  of error runs of length j 
considering the K sequential samples on each trial, a.nd so on. Derivations 
of such results are relatively easy and are presented in [3]. 
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Comparison with Linear Model 

What has been accomplished in the preceding sections is a detailed 
analysis of the sequence of response random variables. In terms of sheer 
bulk of predictions derivable from learning axioms, the sole comparable 
alternative is the single-operator linear model explored extensively by Bush 
and Sternberg [7]. I t  would be instructive, therefore, to place on record a 
detailed quantitative comparison of the fit of these two models to the present 
data. The basic notion of the linear model is that the associaLive strength 
between a stimulus and its correct response increases by a linear transforma- 
tion following each reinforced trial. Stated differently, the probability of 
an error is expected to decrease by a constant fraction following each rein- 
forced trial. If the initial error probability is 1 - ( l /N) then over successive 
reinforced trials the error probability decreases, taking on a number of values 
intermediate between 1 - -  (I/N) and 0. In contrast, the one-element model 
proposed here assumes that the error probability has only two values, 1 -- 
( l /N) or 0, and jumps from the first to the second value following the trial 
on which the all-or-none association is formed. 

Although these conceptions differ markedly, the two models predict 
the same average learning curve. Thus, finer details of the data are required 
to differentiate these models. Since, according to the linear model, q~ de- 
creases by the same fraction every trial, the response random variables, x , ,  
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are statistically independent; that is, the probability of an error on trial n 
is expected to be the same whether the subject responded correctly or in- 
correctly on the preceding trial. For the one-element model the x,  are not 
independent; whether we expect an error on trial n depends heavily on whether 
or not an error occurred on the preceding trial. Noting these differences, we 
are led to expect that the two models would be differentiated best by their 
predictions about sequential aspects of the data. Indeed this is the case, 
a,s may be seen in Table 1 which collects 19 comparisons of the one-element 
and linear models with data. The linear model predictions were obtained by 
referring to the ~heorems derived by Bush and Sternberg [7]. Three other 

TABLE I 

Comparison of One-Element and Linear Models with Data 

One 

Statistic element Data Linear 

1. A v e .  e r r o r s  p e r  i t e m  - - -  1 , 4 5  - - -  
2.  S . D .  1 . 4 4  1 . 3 7  1 . 0 0  

3. A v e ,  e r r o r s  b e f o r e  f i r s t  s u c c e s s  . 7 4 9  . 7 8 5  . 7 0 5  
4. S . D .  . 9 8  1 . 0 8  . 8 4  

5. Ave, errors between first and second success . 361 . 350 .315 

6. S.D. .76 ,72 --- 

7. Ave. errors before second success I. ii I, 13 1.0Z 

8. S.D. 1 , 1 0  1 , 0 1  .93 

9. Ave. successes between errors .488 .540 --- 

I0. S.D. .7Z .83 --- 

Ii. Ave: trial of last error 2. 18 2. 33 3.08 

12. S.D. 2.40 2,47 3.39 

13. Total error runs ,975 .966 i. 162 

14. Error runs of length I ,655 .645 .949 

15. Error runs of length 2 , 215 . 221 . 144 

16. Error runs of length 3 .070 .058 .064 

17. Error runs of length 4 .023 .024 . 005 

Autocorrelation of errors 

18. --one trial apart (cl) .479 .486 , Z88 

19. --two trials apart (ca) . 310 . 292 . 195 

X0. --three trials apart (c3) . 201 . 187 . IZ7 

21. Alternations of success and failure ]. 45 I. 43 I. 83 

2Z. (Fail-Fail runs) -- (Success-Fail runs) .000 .020 -. 380 

23. Probability of a success following an error .67Z .666 .730 
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statistics are shown for which the predictions of the linear model have not  
been worked out (although stat rats could have been run for these). 

The results in Table 1 require little comment. Of the 19 possible com- 
parisons between the one-element and linear models, the one-element model 
comes closer to the data on 17. The greatest differentiation of the models 
is seen in sequential statistics, lines 13 through 23, and in the trial number 
of the last failure (lines 11 and 12). The largest absolute discrepancy from 
data  of the one-element predictions occurs with the average trial number  
of the last failure, but  this statistic also has the largest variance of all those 
considered. Weighing these considerations along with the excellent fits of 
the one-element model to the data shown in Figs. 2-9, we may conclude 
tha t  the one-element model provides a more adequate description of these 
da ta  than does the linear model. 

Other paired-associate data favoring the one-element model have been 
reported in [4]. One dramatic comparison of the two models is provided by 
considering the expected number of errors (to perfect learning) following 
an error tha~ occurs on trial n. According to the linear model, the number 
of errors expected following an error on trial n should be a decreasing function 
of n, since associative strength is assumed to increase steadily with the 
number  of preceding reinforced trials. In  contrast, from the one-element 
model the expectation is tha% the average errors following an error on trial n 
is a constant, (1 -- c ) u l  , which is independent, of the trial number on which 
the error was observed. The point of the mat ter  is tha t  if we observe an error 
on trial n, then we know the item was not conditioned prior to tha t  trial; 
hence, we can assume tha t  our learning process "s tar ts"  in conditioning 
state  Co at  the beginning of trial n and tha t  the state of the subject's associ- 
ative connection has not  effectively changed since he started the experiment. 
We may, so to speak, reset the clock back to the beginning of the experiment 
for predicting the subject's future behavior on tha t  item. 

To get a s~able test of these different predictions, the present data from 
29 subjects were pooled with the data of 47 other subjects learning 10 paired- 
associate items under the same conditions except for 14 of the subjects 
the number of response alternatives was 3, and for 14 there were 8 responses. 
Th e  varying N's  would not  affect the constancy or monotone decreasing 
aspects of the two predictions. For the 760 learning sequences the average 
number of errors following an error on trial 1, on trial 2, . . .  , on trial 6 
were calculated. The data beyond trial 6 were not analyzed since the number 
of cases involved was dropping off rapidly. The results of these calculations 
are shown in Fig. 10 where the one-element model prediction (i.e., average 
of all the data points) and a rough approximation to the linear model's 
predictions are included for comparative purposes. There is little doubt  
t ha t  the one-element prediction is closer to the data, which show remarkable 
constancy. 
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The predicted function for the linear model is not exact since groups 
with differing N's and c's were pooled in Fig. 10; however, the function does 
show the relative order of magnitude of differences to be expected from the 
linear model. The values for the graph were obtained by estimating the 
average c value across groups (it was .25) and then multiplying successive 
values on the function by 1 -- c. For example, the average errors observed 
following an error on trial 1 was 2.05; hence, for trial 2 the linear prediction 
would be 2.05 (.75) -- 1.54, and so on. 

Goodness of Fit Considerations 

Although the preceding tabulation of various statistics and distributions 
tells us something about how well the model describes these data, still one 
legitimately may raise the question of whether there is some summary 
measure for evaluating the over-all goodness of fit of the model to these data. 
For these purposes a chi-square procedure adapted for stochastic learning 
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models by Suppes and Atkinson [15] from an original paper by Anderson 
and Goodman [1] may be used. This procedure tests the ability of a model. 
to reproduce the nth order conditional probabilities in the response sequences. 
Tests involving such quantities have priority in evaluating goodness of fit 
since the primary reference of stochastic models is to these conditional 
probabilities. Other statistics of the data (error runs, trial of second success, 
etc.) are more or less derived from these conditional probabilities and thus. 
should have less priority in deciding over-all goodness of fit. The ehi-square 
test proposed by Anderson and Goodman is most appropriate for those models 
which assume gha~ the sequence of response random variables is a finite 
Markov chain (i.e., that current response probability depends upon, say, 
only one or two prior responses). This happens to be a rather restricted class 
of learning models; however, the test is practically useful even for chains of 
infinite order in which current response probability presumably depends upon 
the entire past history of responses and reinforcements. In practice, such 
ehains can be approximated reasonably well by taking account of only a 
small number (say 3 or 4) of prior trials when calculating conditional proba- 
bilities from the theory. 

The chi-square procedure may be illustrated with the present data. 
The decision was made to look at third-order conditional probabilities using 
the data from the first six trials of the experiment; beyond trial 6 practically 
all responses were correct so very little information could be gained by 
considering the data beyond that point. With two responses (correct and 
incorrect) there are eight possible sequences of length three. The data were 
tabulated in an 8 X 2 table, the entries in each cell corresponding to the 
frequency with which a given sequence of responses on trials n, n -t- 1, and 
n + 2 was followed by a success (or failure) on trial n + 3. For each subject- 
item sequence, three observations were obtained corresponding to n taking 
on the values 1, 2, and 3. There were t.hus 3(290) = 870 observations in total. 

The expected conditional probabilities are readily calculated from the 
one-element model. For example, four of the eight prior sequences have an 
error on trial n + 2; hence, the expected conditional probability of an error 
on trial n + 3 would be a. The only conditional probability which is trouble- 
some to compute is that of an error given a prior sequence of three successes 
(with responses prior to trial n being unspecified). This conditional proba- 
bility is calculated separately for n = 1, 2, 3, and then the three results are 
averaged. Analogous computations from the linear model are extremely 
simple--in that model the x~ are considered to be statistically independent; 
henee, one merely averages the response probabilities on trials 4, 5, and 6. 

The conditional probabilities calculated above are converted into eell 
frequencies by multiplying them by the observed frequency of a given prior 
sequence of three responses (i.e., we multiply by the observed row sums of 
the table). Chi-square values can then be calculated separately for the one- 
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element model and for the linear model. There are eight rows in the table, 
each row having one linear constraint (the two entries must sum to the 
appropriate row total) and for each model we have estimated one parameter 
(c); hence, each chi square will have seven degrees of freedom. The chi-square 
values for the observed and expected frequencies were 9.40 for the one- 
element model and 98.36 for the linear model. Therefore, the test rejects 
the linear model in its fit to these data but does not reject the one-element 
model. 

Suppes and Chmura [16] have proposed a simple but rigorous procedure 
for discriminating between the goodness of fit. of two models for which the 
above ehi-square values have been calculated. Their statistic, T, is the ratio 
of the two chi-square values, each divided by its respective degrees of freedom. 
Under the assumption that one of the models is true, T is distributed as the 
noncentral F statistic, with a noncentrality parameter equal to the value 
of an ordinary chi square done .on the two sets of expected frequencies 
(ignoring the data for the moment). For the present case, the value of T 
is 10.40. This value is so large (an ordinary F table requires only 7.00 for 
significance at the .01 level) that it would be a mere formality to calculate 
its exact probability under the assumption that both models fit the data 
equally well. Hence, we may unequivocally reject the linear model in favor 
,of the one-element model. 

Range of Application of the Model 

The fact that the one-element model gives an adequate quantitative 
.account of these paired-associate data satisfies one important requisite of 
a scientific theory, that of being close to the data. If, in addition, the theory 
is mathematically tractable in that numerous consequences are easily derived 
in closed form, then indeed we are in a fortunate position. The main task 
of this paper has been to show that the one-element model is mathematically 
tractable; those familiar with current work in mathematical learning theory 
certainly can have no quarrel with this claim. This propel%y of the model 
is due to the extreme simplicity of its assumptions about the association 
process. One might effectively argue that the present model nearly achieves 
the absolute minimum in assumptions for a workable theory of learning. 

Once one has demonstrated the predictive validity of a model for a 
limited class of experimental situations, there remains the task of charac- 
terizing more generally those experimental arrangements to which the model 
may be expected to apply. In the first part of this report, we explicitly re- 
stricted the model to the S-R association process and have used simplified 
experimental situations in which response learning was precluded. Within 
this restricted domain of PAL, the model has proved extremely useful in 
investigating the effects on learning 'of variations in the number of response 
.alternatives and in the reinforcement conditions prevailing during learning [4]. 
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In addition, the model has led us to do experiments in which the guessing 
probabilities are altered indirectly by varying the proportion of items in 
the list that have the same correct response (e.g., with 20 items and responses 1 
and 2, we have varied the number of items that have 1 as the correct response). 

The experimental conditions may differ considerably from those obtaining 
under paired-associate learning, but still the model may be expected to apply 
if response learning is precluded. A good example of such an application 
is to the paradigm that experimenters have called verbal discrimination 
learning (e.g., Rundquist and Freeman, [14]). In one variant of this experi- 
ment, the subject is required to read the correct response from a card on 
which are printed N alternatives (words, syllables); the subject goes repeatedly 
through a deck of K such cards until he can give the correct response to 
all of them. The model has been applied to the results of such an experiment 
with N = 2; its predictive validity proved equally as good as that reported 
here for the paired-associate task. To cite a further example of work in 
progress, we are attempting to extend the model to a similar task in which 
the subject learns to recognize or identify a visual form as one of those that 
had been shown to him in a "training list" of visual forms. 

A further extension of the present work would investigate the modifi- 
cations in the theory that are required to handle those PAL situations in 
which the responses per se must be learned. Here again it may prove ad- 
vantageous to fractionate the problem by utilizing experimental arrange- 
ments which primarily involve only response learning. The free verbal 
recall paradigm [e.g., 2] would appear to serve these purposes. In such ex- 
periments the subject is read a number of unrelated words and later is tested 
for free, unaided recall. With this arrangement, the responses are conditioned 
presumably to situational and intraverbal cues in a manner analogous to 
that  assumed to occur in PAL response learning. Evidence already exists 
to indicate that the free verbal recall situation may yield to a simple theoretical 
analysis. Miller and McGill [12] and Murdock [13] have published quantitative 
theories which appear to account adequately for their results from free verbal 
recall experiments. Ultimately, one would like to have a set of combination 
axioms whereby the assumptions about S-R association and response learning 
may be combined for predicting results in those experimental situations 
involving the concurrent operation of these two processes. It may not be 
presumptuous to suppose that such a development will come about in the 
next few years. 
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