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 MATHEMATICAL ANTHROPOLOGY

 Hans Hoffmann * State University of New York at Binghamton

 Although human imagination is unbounded, our unaided ability to

 experience it is limited. Experiencing requires tools, and as these

 become developed wider realms of imagination can be made one's

 own. We can imagine differences in the length of objects, but need
 a tool-the natural numbers-to experience them. We can imagine
 an infinity of numbers beyond the integers and their inverses, but

 need a tool-Cantor's diagonal proof-to experience their existence.
 For this reason, tools are the essence of culture; whether physical or

 mental, they permit man to experience wider ranges of his universe.

 Atlatls permitted early man to experience the flesh of mammoths,
 rather than the other way round. Biochemistry is a tool that can pre-

 serve life, and thus allow more people to experience a full life. Divi-

 sion of labor is a tool that enables man to experience complex soci-
 eties and urban life. Mathematics is a tool that enables man to under-
 stand and control an immense number of events and processes in the
 physical world.

 Mathematics, in particular, is a tool that penetrates realms of imagi-
 nation hopelessly beyond the experience of a toolless mind. More-

 over, once mathematical tools have been developed, they often
 reverse their effect and enlarge not only one's experience but also
 one's imagination. Manning (1914: 13) observed:

 The four-dimensional geometry is far more extensive than the three-
 dimensional, and all the higher geometries are more extensive than the
 lower. The number and variety of figures increases more and more rap-
 idly as we mount to higher and higher spaces, each space extending in
 a direction not existing in the lower spaces, each space only one of an
 infinite number of such spaces in the next higher.
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 42 EUNS HOFFMANN

 Mathematics, like all of human culture, is constantly growing. Tools

 -or problem solutions-developed by earlier innovators are com-
 pressed, generalized, and stored to become the cultural inventory of

 today. This is as true of an automobile as it is of geometry. Automo-
 biles combine pneumatic tires, internal combustion engines, and thou-

 sands of other innovations to solve the problem of human immo-

 bility. Geometry collects the surveying rules of the Egyptians, the

 deductive procedures of the Greeks, the non-Euclidean formulations

 of the nineteenth century, and the movement beyond spaces of only

 three dimensions, and from them constructs a tool for the exploration
 of space in general.

 Cultural solutions are stored in a variety of forms-physical tech-
 nologies, mythologies, social organizations, and written records (Rob-

 erts 1964). Mathematical solutions are usually stored in the form of

 theorems, each a concise description of certain structural aspects of
 a mathematical system. For convenience, solutions to mathematical

 problems are arranged in sequence from the most general to the most

 restricted, and each successive theorem is derived from the more gen-
 eral ones preceding it. The sequence as a whole thus takes the form

 of a deductive system. Euclidean geometry is one classic example of

 such a system; the evolution of topology out of set theory is another.
 It is as difficult to define "mathematics" to the satisfaction of all

 mathematicians as it is to define "culture" to the satisfaction of all

 anthropologists. However, as Abraham observes (1966: 3-6),

 In mathematics, nothing is more elemental and pervading than t-he notions
 of set and mapping.... Much of mathematics is concerned with the struc-
 ture and behavior of a special class of mappings. In fact, the various
 branches of mathematics can be described as the study of certain cate-
 gories, or classes of sets with a certain type of structure, together with
 mappings which preserve this structure. For example, linear algebra is
 concerned with the category of vector spaces and linear mappings.

 As an illustration, consider the one-to-one mapping that associates an
 element of the set 'integers" with an element of the set 'squares of
 integers" (corresponding to the function y = x2). This particular map-

 ping opens up a whole realm of mathematics, known as transfinite

 arithmetic. We notice first of all that neither of these two sets is finite;

 and further, that the set "squares of integers" is a subset of the set

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 MATIIEMATICAL ANTHROPOLOGY 43

 "integers." These mathematical observations were first made by Gali-

 leo, and led to the modern definition of a (denumerable) infinite set

 as one that can be put into one-to-one correspondence with a (proper)

 subset of itself.

 Mathematics and science are very different systems, perhaps as dif-

 ferent as male and female. Yet their union has proven to be enor-

 mously productive. Mathematical analyses of empirical data are the

 essence (indeed, the criteria) of the hard sciences. In return, empiri-

 cal problems have stimulated much mathematical innovation. It is dif-
 ficult to conceive of one discipline existing without the other. Math-

 ematics is concerned with systematic relationships between abstract

 sets that have no empirical content whatever. The results of this treat-

 ment are variously described. Braithwaite, for example, employs the

 term "calculus" (1953: 23):

 A representation of a deductive system in such a way that to each prin-
 ciple of deduction there corresponds a rule of symbolic manipulation will
 be called a calculus. The use of a calculus to represent a deductive system
 has the enormous practical advantage that it enables deductions to be
 effected merely by symbolic manipulation, and the correctness of these
 deductions can be checked automatically merely by inspecting the rela-
 tionship between the symbols; it is for this reason that the Indian inven-
 tion of Arabic numerals was such a landmark in the history of civilization.

 Geoghegan prefers the term "axiomatic theories," which he describes

 as follows (1965: 6):

 This approach to theory construction usually involves four basic elements:
 (1) a specification of primitive notions, (2) a statement of the axioms,
 (3) a presentation of relevant definitions, and (4) the derivation of useful
 theorems.... Discussion of the primitive notions usually constitutes part
 of the theory's interpretation: the assignment of "meaning" to otherwise
 "meaningless" logical entities.

 Science, by contrast, is concerned with systematic relationships be-

 tween sets of concrete empirical data.

 The function of science ... is to establish general laws covering the be-
 havior of the empirical events or objects with which the science in ques-
 tion is concerned ... and to make reliable predictions of events as yet un-
 known. If the science is in a highly developed stage, as in physics, the
 laws which have been established will form a hierarchy in which many
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 special laws appear as logical consequences of a small number of highly
 general laws expressed in a very sophisticated manner; if the science is in
 an early stage of development-what is sometimes called its "natural his-
 tory" stage-the laws may be merely the generalizations involved in clas-
 sifying things into various classes. (Braithwaite 1953: 1.)

 Clearly, both mathematics and science are organized as deductive

 systems. The difference between them depends on whether the sets

 treated by the systems are abstract or concrete.

 A laboratory scientist or field worker usually employs some abstract

 deductive system developed by mathematicians when he is construct-

 ing a scientific system, since he rarely possesses the specialized train-

 ing to construct an effective mathematical system of his own. To ex-

 pect an anthropologist, for example, to invent and develop Markov
 chains from scratch in order to investigate Ethiopian age grades
 (Hoffmann 1965) is asking for rather a lot. In this way, I availed

 myself of Fitch's mathematical system of symbolic logic (1952) in
 developing a scientific theory of Pawnee marriage rules (1959). Geo-

 ghegan, on the other hand, acted as both mathematician and scientist

 in constructing his theory of information processing (1965: 7-8).

 Even though a theory and its interpretation are completely different things,
 it is often the case that they are presented simultaneously, usually through
 a judicious choice of familiar terminology.... By constructing an economi-
 cal axiomatic basis [mathematical system] for the [scientific] theory, we
 can minimize the amount of interpretation required to make it meaning-
 ful, and thereby eliminate many of the semantic problems that might
 otherwise confront us in using the theory and constructing productive
 models for it.

 Braithwaite's criterion for a developed science-"a hierarchy in

 which many special laws appear as logical consequences of a small
 number of highly general laws"-is not often met in contemporary

 anthropology. My own hierarchy of eleven theorems (1959) that
 generated the Pawnee marriage rule was an early move in this direc-
 tion. The ten theorems that constitute Geoghegan's theory of infor-
 mation processing are a much tighter hierarchy, and may well be a
 model for future anthropological theories. Neither of these systems
 has a wide application: mine applies to only one culture type, and
 Geoghegan's to only a small part of any given culture (unless one
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 MATHIEMATICAL ANTHROPOLOGY 45

 takes the view that all culture is merely information-processing ac-

 tivity). However, these are essential beginnings.

 Randall has called attention to a fundamental division among sys-
 tems, be they scientific or mathematical. Scientific systems associate
 an input (e.g., a quantity of heat) with a definite output (the tem-

 perature of a liquid). The relationship between input and output de-
 pends on the properties of the system (here, the specific heat and the
 volume of the liquid). Randall continues (1968: 24-25):

 With Nering (1963: 1-2), let us suppose that the system transforms its
 inputs in certain ways. Assume that two inputs can be added and their
 sum put through the systems so as to produce an output. Also assume that
 any two separate inputs will produce two separate outputs. If the sum of
 those outputs is equal to the output of the sum, then the system is known
 as an additive system. Also assume that an input can be changed by a con-
 stant-factor multiplication. In an additive system, if the output is changed
 by a particular factor, then the system is called linear. Determinant, Mar-
 kovian stochastic, differential, and integral operators are all linear systems.

 Of course, not all empirical systems are linear.... For this reason, some
 nonlinear systems of classical physics have been approximated as linear in
 order to achieve solution. For example, the restoring force of a simple pen-
 dulum is proportional to the sine of the vertex angle. Even though trigo-
 nometric functions are not linear, a good model can be made (subject to
 the constraint that the angle is small) by approximating the sine of the
 angle as the angle itself (Sears and Zemansky 1955: 201). Also, a few
 human physiological systems have been successfully modeled by such ap-
 proximations (Grodins 1963: 27).

 In short, elegant mathematical solutions to nonlinear problems are rare
 or nonexistent (Nering 1963: 1). Hence the behavior of almost all anthro-
 pological components must be modeled by linear systems if they are to be
 modeled at all.

 Nonlinear systems are equally common, and equally intractable, in

 pure mathematics. Mathematicians cope with them in the same way
 that physicists do: they approximate them with linear systems. Abra-
 ham (1966: 37-38) comments:

 Linear mappings are of central importance in advanced calculus, which
 is the study of general nonlinear mappings from one vector space to an-
 other. In that context, the derivative f'(v) of a mapping f: V -> W, gen-
 eralizing the familiar tangent line interpretation of the derivative g'(x) of
 a function g: R1-> R, is defined to be the linear mapping L: V -W,
 which is the best possible approximation to f in the vicinity of the point
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 v E V. (See Spivak, Calculus on manifolds. New York, Benjamin, 1965.)
 Thus nonlinear mappings are studied by approximating them with linear
 mappings, which have a simpler structure. This idea is the basis of a wide
 variety of applications of linear algebra to the real world. For example, a
 factory is a nonlinear mapping from the mathematical viewpoint.

 These properties of linear and nonlinear systems explain the prac-

 tical difficulties faced by generative grammarians. As Randall (1968:

 39) points out,

 Grammatical space is not linear, and apparently cannot be modeled as
 linear. More than a decade ago, Chomsky showed that English grammar
 cannot be modeled by any Markovian (linear) operators when the phase
 space is assumed to be some finite structured set of connected symbols
 (Chomsky 1965: 111). Furthermore, it appears likely that these "finite
 state grammars" are unable to model most natural languages (Chomsky
 and Miller 1965: 157). Languages usually have a very small number of
 symbolic inputs and an infinity of outputs that cannot be generated by
 linear operators.

 It is likely that the empirical processes underlying language are
 very different from those underlying culture, if only because linear
 models do apply to cultural phenomena. On the other hand, I do
 not feel qualified to discuss the history and range of generative gram-

 mars, and will not deal further with them in this survey. For the same
 reason, and with considerable regret, Buchler and Selby's A Study of

 myth, based largely on the methods of generative grammarians, will
 not be treated here. This paper stresses the use of mathematical sys-

 tems in defining fundamental anthropological concepts and processes,

 and does not deal with studies that are primarily inductive in empha-
 sis. Therefore, Driver and Schuessler's correlational analysis (1967)
 of Murdock's 1957 ethnographic sample, the Binfords' analysis of
 functional variability in the Mousterian of Levallois facies (1966),
 and similar studies, have also been excluded.

 This paper will survey mathematical systems of increasing com-

 plexity-partial order, total order, natural numbers, real numbers,
 vector spaces, and matrices-and consider their application to anthro-

 pological problems. I have also included a note on the mathematics
 of kin-term functions, prepared for this review by Robert Randall.
 This note illustrates how another taxonomy of algebraic structures
 can be used to evaluate statements in culture theory. Although there
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 MATHEMATICAL ANTHROPOLOGY 47

 is as yet no literature on this approach, its potential is clearly enor-
 mous.

 THE DATA SET X

 Anthropology, in essence, deals with sets-sets of people, events,

 artifacts, emotions, kinship terms, and many other empirical phe-
 nomena. Anthropology is perhaps unique among the scientific disci-
 plines in the extraordinary variety of its data. It is more than just the

 passive contemplation of data, however, even though many anthro-
 pologists are drawn to their field by an intuitive and emotional in-
 volvement with an exotic people. Anthropology is a science in that
 it investigates the actual structure of events, kinship terms, and the
 like; but it is also an understanding of people and their life that can
 be communicated to others. If for no other reason, an anthropologist's

 emotional involvement with his data must be made explicit. Mathe-
 matics is the most efficient instrument yet developed to explain struc-

 tures of all kinds, and is thus the natural language for bringing a pri-

 vate experience to a world of listeners. Mathematics does not destroy
 intuition; rather, it communicates intuition in a comprehensible form.

 THE PRODUCT SET X2

 One of the most fundamental concepts of mathematical structure

 is that of a product set, or Cartesian product. Let X and Y be two

 sets. The product set X X Y consists of ordered pairs (x, y) in which
 x is an element of X, and y of Y. The product of a set with itself,
 X X X, will be denoted by X2. Consider X as a set of people that
 forms a tribe. The product set X2 will then include all possible pairs
 of tribesmen. If there are ten people in X, then X2 will consist of 102
 elements. A product set of tribesmen can always be defined empiri-
 cally, even though not all its elements are of anthropological interest.
 For example, some pairs of tribesmen are related to one another, and
 others are not. Students of kinship are primarily interested in the first,
 rather than the second, of these two subsets of X2.

 By contrast, a product set of events, rather than things or people,
 cannot always be defined empirically in its entirety. Consider the set
 of events that make up the fiesta de matrimonio among the Tenejapa
 ladino (Metzger and Williams 1963). Some of the ordered pairs of

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 48 HANS HOFFMANN

 events will reflect Tenejapa reality, but many will not. Presentaci6n
 precedes and is adjacent to despedida, but not to casamiento. Thus

 the element (presentacidn, despedida) reflects ethnographic reality,

 whereas the element (presentacidn, casamiento) does not. It fre-
 quently happens that a mathematical abstraction goes far beyond

 empirical reality, and must be "pruned" before it becomes useful in
 a science. (Linear programming exploits this procedure, in that the

 pruning is done by intersecting half-planes. The intersections then

 become crucial to the solution of the programming problem.) Brewer
 (1966) has used unpruned product sets in abstracting statements of

 anthropological theory. However, the concept usually becomes most

 useful to scientists when they have some means of partitioning off
 meaningful subsets.

 RELATION: R4

 The mathematical entity that partitions a subset out of a product

 set is called a relation. A relation B4 from a set X to a set Y assigns
 to each pair (x, y) in X x Y exactly one of the following statements:

 "x is related to y," or "x is not related to y." A relation from X to X
 is called a relation in X. In the Tenejapa example, the relation in-
 volved would be called "is adjacent to and precedes." This relation
 can then abstract an empirical part of the structure of Tenejapa wed-
 ding ceremonials. Relations have sometimes been explicitly used in

 the analysis of social organization. For example, among the Pawnee
 (Hoffmann 1959), certain pairs of tribesmen stand in the relationship
 tiwatsiriks to one another. Empirically, this means that those Pawnee
 (x) who are called tiwatsiriks by other Pawnee (y) are male same-

 generation agnatic kinsmen of ascending-generation uterine kinsmen

 of y. Mathematically, this ethnographic observation is abstracted by

 (x) [( 3 y)[xR1y] D x[[MnGonA] I [G+nU]]y].

 Obviously, not all elements of the product set of Pawnee will stand
 in this relationship to one another. Thus the relation R1 partitions out

 one of this set's anthropologically meaningful subsets.
 The use of a relation to split a product set imposes a constraint on
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 the product set. Ashby (1956: 127, 130) defines a constraint as a re-
 lation between two sets, occurring "when the variety that exists under

 one condition is less than the variety that exists under another."

 It follows that every law of nature is a constraint. Thus the Newtonian law
 says that, of the vectors of planetary positions and velocities which might
 occur, e.g., written on paper [the larger product set], only a smaller set will
 actually occur in the heavens; and the law specifies what values the ele-
 ments will have. From our point of view, what is important is that the law
 excludes many positions and velocities, predicting that they will never be
 found to occur.

 Thus R1 is a constraint inherent in Pawnee culture. It excludes those
 pairs of Pawnee who cannot call each other tiwatsiriks because they
 are not linked by the genealogical chain that is specified by the defi-
 nition of R1. Other relationships in Pawnee culture give anthropologi-
 cal significance to other subsets of elements in the product set. More-
 over, since any given Pawnee is involved in more than one kinship
 relation, these subsets will overlap. The superset of anthropologically
 meaningful subsets of the Pawnee product set, although it is an ab-
 straction, will not be disjoint.

 We should note in passing that kinship relations are not equiva-
 lence relations. That is, they are not reflexive (xR,x) because a father
 (x) cannot be a father to himself. They are not symmetric (xR1y and
 yR1x) because the son (y) of a father (x) cannot also be the father of
 his father. Finally, they are not transitive (xR1y and yR1z imply that
 xR1z) because the father (x) of a son (y) cannot also be the socio-
 logical father of that son's son (z). However, a kinship relation does
 define a topology on the product set X2 of pairs of tribal members
 (Hoffmann 1968: 50). A topology (T) is a class of subsets of the set
 X2 if it fulfills three conditions: (1) if the sets X2 (all the pairs) and

 0 (none of the pairs) are both included in T; if (2) the union of any
 number of the subsets in T belongs to T (here, the pairs that are
 R1-related together with the pairs that are not R1-related constitute
 X2); and (3) the intersection of any two subsets in T belongs to T
 (here, the pairs that are R1-related and not R1-related constitute 0).
 The mathematical system (X2, T) is called a topological space.
 Buchler and Selby (1968a: 279-309) have implicitly used relations

 to investigate information theory and social organization.
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 When the observer maps Kariera kin classes onto sections, the information
 necessary to define the marriage status of an individual is reduced to two
 bits of information. For example,

 1. Is it Banaka or Karimera? (No)
 2. Is it Palyeri? (Yes)

 Here, each question asked of an informant establishes a relation. In

 this case, the two relations narrow down the relevant subsets until
 the ethnographer has established the marriage status of an individual.

 PARTIAL ORDER: ,_

 In general, the anthropologically relevant subset of elements of a

 product set is further structured by the culture involved. This may be

 abstracted as a partial order, defined by a culture, on the subset. Con-

 sider the following sequences of events that enable a land unit to

 move down the generations without being divided in the process

 (Prindle 1967: 20). The culture is Tibetan.

 Marriage in Ladak is either bag-ma (patrilineal and patrilocal) or mag-
 pa (matrilineal and matrilocal). Prince Peter believes that bag-ma mar-
 riage is a fraternally polyandrous one in most cases and all the husband's
 brothers become the de facto husbands of the bride. But, ordinarily, only
 the eldest son and the next eldest participate in the marriage ceremony
 (Prince Peter 1963: 346). A mag-pa marriage can be monogamous or
 polyandrous, whichever the heiress decides. If the mag-pa marriage is
 polyandrous, it is usually nonfraternal and the woman often chooses
 husbands who are not related (Prince Peter 1963: 346).

 In case a family is childless, every effort possible is employed to pro-
 vide an heir. If the first wife is barren, the husbands may marry a second
 or third wife in an effort to provide an heir (Prince Peter 1963: 346). In
 case a family is childless and not rich enough to bring in another wife,
 the custom of porfag may be employed. By means of this custom, a man
 is temporarily brought into the household to sire a child (Prince Peter
 1963: 346).

 Prindle (1967) has isolated 19 events (enclosed in boxes in the dia-

 gram), which would form a product set of 192 (or 361) elements.

 Only 25 of these elements (culturally permitted transitions between

 events) are actually observed in Tibetan culture. (See the chart on p.
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 52; modified from Prindle 1967.) These elements form a partial order

 of the product set. A relation in a set Y is called a partial order
 on Y if it is reflexive (a a), antisymmetric (a b and b a imply
 that a = b), and transitive (a b and b c imply that a c). The
 mathematical system (Y,) is called a partially ordered set. Cul-

 turally permitted transitions between ethnographic events are a par-

 tially ordered set with defined as "event a can follow event b in
 time."

 Another variety of order can be defined in a set, with vast conse-

 quences for both mathematics and science. This relation is called total

 (or linear) order, and is symbolized <. A set is totally ordered if the

 relation can be defined for every pair of its elements, that is, if
 either a b or b ' a holds for every pair of elements (a, b) in the
 set. The mathematical system (X, <) is called a totally ordered set.
 Some subsets of a partially ordered set Y may in fact be totally or-

 dered. Although it is not possible to define the relation ~ for the pair

 of elements "poriag" and "male inheritor," there are paths through
 Prindle's diagram where any two events encountered can be so or-

 dered. One example would be: family A holds land, no inheritor, por-
 jag, child inherits, female marries mag-pa, family A continues to hold

 land. Culture patterns may be thought of as totally ordered sets that

 form a partially ordered superset.
 Partially ordered sets can also be discussed with the language of

 graph theory. Graphs consist of vertices (events), edges (transitions
 between events), and a mapping that associates each edge with a
 pair of vertices (Busacker and Saaty 1965: 6). In other words, ele-
 ments of a product set of vertices are mapped into a set of edges. This

 mapping has the form: X2-> Y. Anthropologists postulate that cul-
 ture is never static. For example, some tribal culture patterns may
 be simplified by the tribesmen themselves. A graph of the new pat-
 tern would have fewer vertices and fewer edges. Atkins and Curtis
 (1966) have discussed the metrical aspects of such "de-constraints,"
 using Metzger and Williams's 1963 analysis of Tenejapa ladino wed-
 dings. Specifically, Atkins and Curtis propose a "de-constraint" index
 based roughly on the ratio between number of edges found in a graph

 before and after the simplification of the culture pattern.
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 Every descriptive ethnography is an extensive graph in latent form.

 Explicit use of graph theory, however, is a more recent phenomenon.
 Buchler and Selby (1968a: 48-65) have investigated myths from a

 graph-theory point of view. After considering Levi-Strauss's (1963:
 227) ordering of the variants of the Hopi Shalako myths, they estab-

 lish such theorems as: "All versions of a myth may be logically and

 sequentially derived from an initial transformation relationship or
 from the composite graph of a group of variants." Busacker and Saaty

 remark (1965: 4) that every anthropological graph of interest is ab-

 stractly identical to a geometric graph, i.e., a curve in En. This mathe-
 matical entity will be discussed later in the paper. For the moment,

 we call attention to the implication of their remark, which suggests
 that all ethnographic data can be converted into numbers.

 TOTAL ORDER: <

 The goal of much anthropological research is to define a total order

 relation on a set of ethnographic data. Carneiro (1968) has attempted

 to order tribal groups throughout the world with the relation "tribe a
 has more culture traits than tribe b." He is also interested in order-
 ing selected culture traits in Anglo-Saxon England into a develop-

 mental hierarchy; here the relation is "trait a was developed before
 trait b." The mechanical procedure used by Carneiro to generate

 these totally ordered sets is Guttman scaling. Buchler (1964) has
 used the same method to construct a developmental typology of
 Crow kinship systems. Kay (1964) has used Guttman scaling to order
 Tahitian consumer behavior, and has discovered such domestic ideals

 as "stoves outrank refrigerators." More recently, Buchler (1967a) has
 investigated the Atempan religious hierarchy, which is made up of

 offices (cargos) devoted to the performance of church ritual. His aim
 is to uncover the relative weights of the different criteria used in the

 selection of cargos in order to probe decision-making processes in

 Atempan. Buchler generated this order of qualifications by using in-
 tegral linear programming. This is a self-contained computational

 device, which is essentially independent of the general theory of
 linear programming based on polytopes in En (Gale 1960: 132-79).
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 THE SYSTEM N

 Mathematical systems are made up of elements and an associated

 structure consisting of the algebraic operations, or mappings, that can
 be performed in the system. Consider the subset N of the rational

 integers Z = (0, ?1,? 2,?i3,.. .). The elements in N are called the

 natural numbers, and consist of (1, 2,3,...). The system N contains

 the operation of addition, defined as a mapping, a, that takes a Carte-

 sian product of elements from N back into N, that is,

 a: NXN->N: (m,n)->m+n.

 It also contains the operation of multiplication, P, defined by

 ( : NXN->N : (m,n)->mn.

 A third property of the natural numbers is that the total order rela-

 tion < can be defined on them. We are now in a position to define

 the mathematical system N as follows: N = (N, a, fS, <).

 MAGNITUDE: X -* N

 A scientific discourse that includes numbers in its vocabulary has

 enormous power and clarity, compared to one that does not, because
 it can deal with the concept of magnitude in very precise terms. But

 any scientific vocabulary that includes numbers must consist of an

 interpreted mathematical system. The statement "this village contains

 ten houses" implies that elements of a discrete set, that of houses in
 a given village, have been paired off with elements of the mathemati-

 cal system N, which includes the natural numbers (i.e., the non-
 negative real integers). The magnitude of the set of houses is estab-
 lished by the cardinality of the subset of N needed for the mapping.

 If the last house is mapped into the tenth element of this subset, the

 cardinality of the set of houses is ten.

 ADDITIVITY: X + Y -, N

 It is possible to define the concept "magnitude of two discrete sets"

 using only the system N. This application of N to an empirical prob-
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 lem is made possible by the existence of the mapping a within N.

 The magnitude of two discrete sets taken together is the sum of the

 magnitudes of the individual sets. A village with ten houses in one

 part and five in another contains fifteen houses altogether. This, of

 course, is how we expect the concept of magnitude (M) to behave.
 Abstractly, this expectation is reflected in the additivity of magni-

 tude: M(A + B) = M(A) + M(B). Additivity can be taken on the

 level of postulate. It is a characteristic of mathematics that seeming

 trivia of this kind are vitally important. For example, from this pos-

 tulate Lebesgue developed in 1902 a measure of the magnitude of
 absolutely discontinuous point sets. "Lebesgue's discovery came none

 too soon, for already discontinuity had begun to invade physics....
 Now it began to be realized that the structure of electricity, matter,
 and energy was granular, so that measures of these quantities varied

 in jumps, or discontinuously" (Singh 1959: 127).

 REAL NUMBERS: R

 Frequently, scientific investigations require that numbers be asso-

 ciated with sets of continuous rather than discrete empirical data.
 This can produce complications that the system N is unable to re-

 solve. Suppose that the length of a house is to be measured by re-

 peatedly placing a standard yardstick against the house. One can then

 count how many times the stick was used; thus the magnitude of a

 continuous set has been established by counting the elements of a

 discrete set. So far, so good. But what if the house is more than 5 and
 less than 6 yards long? There is no way to measure the remainder

 with an unmarked yardstick. More generally, there is no element i
 in the set N. To establish magnitudes of sets of continuous empirical

 data, which generally contain remainders, a different, augmented,

 mathematical system is required. Many empirical contingencies like

 this embarrass the system N. One cannot include half a pot in an

 analysis because the rationals like i are not elements of N. One can-
 not measure the diagonal of a square blanket because the irrationals

 like \/2 are not elements of N. One is at a total loss to measure the
 area of a circular field because the transcendentals like 7c are not

 elements of N.
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 Clearly, a mathematical system that includes all of the above num-

 ber types, as well as the set of natural numbers, is needed. These ele-
 ments make up the set of real numbers, or R. A geometric represen-

 tation of R includes all of the points on a straight line, not just the

 points corresponding to integers. The ordering structure associated
 with the set R is called a field, and is defined by a set of postulates
 omitted here. The real number system R contains the mappings a and
 (, as well as the order relation <. Thus the real number system is

 definedbyR = (R, a, (, <).
 The real number system is so rich in structure that it supports most

 of the mathematical systems so far used by scientists. To be sure,
 "There are a number of seemingly unrelated problems from physics,

 communication engineering, statistics, and so on that lead us to con-
 sider probabilistic relations in algebraic structures not equivalent to

 the real line" (Grenander 1963: 14). The intellectual charm of this

 esoterica cannot, as yet, compare with the solid payoff of R-based
 systems. R is required if half-finished houses are to be counted, and

 anthropological variables must be able to range over all of the real
 numbers if mathematical anthropology is to have much substance.

 The situation is not desperate. Sociological subjects produce 2.3 off-

 spring with bemused indifference to mathematical impropriety; com-
 pulsive potters hand unfinished wares to apprentices, who may never

 exceed -/2 of a design lest the spirits object. Nevertheless, the ven-
 ture moves, at least for all but the most puritan of mathematicians.

 CONTINUOUS SET MAPPING: X - R

 Many parameters of human populations are recorded by real num-
 bers: height, weight, IQ, blood pressure, and opinions, for example.
 These data form continuous sets, whose magnitudes are established
 with the mapping X -* R. The mapping corresponds to a pointer

 reading, i.e., to a pointer that has been moved by the empirical phe-
 nomenon along a scale inscribed with all the real numbers (exactly
 for the rationals, approximately for the irrationals). Scientific reason-
 ing is based on various abstract concepts such as mass, length, time,
 temperature, people, or culture traits. These are mutually indepen-
 dent, and have unique units of measurement: gram, centimeter, see-
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 ond, degree, number of people, and number of traits. Each of these

 units conforms to the postulates for a measure, which mathematically
 abstract the scientific requirement that the "length" of a broken and
 reassembled stick is equal to the sum of the "lengths" of its parts. This

 concept has already been introduced in discussing the magnitude of
 a discrete set. Mathematically, measures are an important subset of

 the collection of mappings of the form X -- R; they are set functions,
 i.e., functions (or mappings) that associate a set X with the real
 numbers.

 The postulates for a measure are: M(0) = 0 (the measure of the

 empty set is zero); M(A) > 0 (the measure of a non-empty set is
 positive); and M (A) + M(B) = M (A + B) (measures are additive).

 Since empirical units are the building blocks of scientific dis-

 courses, continued attention to their definition and refinement is
 essential. Naroll (1964) has reopened this quest in anthropology,

 and thus set the stage for such symposia as Essays on the problem
 of tribe (Helm 1967). However, a great deal of further work is re-

 quired before the appropriate units of anthropological discourses
 can be expected to emerge. Carneiro (1957: 169-70) has proposed
 an index of subsistence productivity that might serve as an anthro-

 pological unit-i.e., as a basic concept expressed numerically and
 conforming to the measure postulates. This index records the num-

 ber of man-hours required to obtain a specified annual caloric con-

 sumption of food (106, an average figure for most human popula-
 tions) from a given mode of subsistence. Carneiro's proposed measure

 consists of the function M (P of Si/year = 1016/Ci, where Ci is the
 number of calories produced per man-hour per mode of subsistence
 (Si). Now, 106/C, is a real number, so that Carneiro's measure maps

 each mode of subsistence Si into the reals by means of the rule: "Take
 the value of Ci associated with Si and divide it into a million."

 The set of measures contains an important subset, which is defined

 by postulating that the measures of all its subsets must add up to 1:

 M(Ai) + M(A2 ) + .. . + M(An ) = 1 .

 This postulate divides the probability measures from more general

 measures. This interpretation of the concept of probability was de-

 veloped by Kolmogorov in 1933, and represents a major breakthrough
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 in developing a language for science: "This task would have been a
 rather hopeless one before the introduction of Lebesgue's theories of

 measure and integration. However, after Lebesgue's publication of
 his investigations, the analogies between measure of a set and proba-
 bility of an event ... became apparent" (Kolmogorov 1950: 1). An-
 thropological applications of probability theory are extensive. An in-

 teresting recent example is Goldberg's investigation of FBD marriage
 among Tripolitanian Jews in Israel (1967: 176-91), which developed
 a probability measure as follows:

 Probability of rate of probability of hav- number of youths mar-
 FBD marriage marriage X ing available FBD X rying at a given age
 at a given age number of women in given age range x number of males

 This associates the set of bachelors who will marry their FBD with
 the real number 0.008.

 THE MAPPING R -. R

 Scientific reasoning uses concepts constructed from various basic
 entities. "Velocity" is associated with a specific number of distance

 units traversed during a given number of time units (V = D/T).
 Similarly, "acceleration" is defined by (D/T)/T, "force" by M(D/T)T,
 "sedentariness" by PT/(D + 1), and so on. Mathematically, t-hese
 concepts are all mappings of the form R -> R. Velocity associates a
 real number V with a real number represented by the ratio D/T. The
 graph of this function is a subset of the plane R2, in this case a straight

 line through the origin (or zero vector) of R2. Mappings of the form
 R -> R contain a subset whose members are particularly well suited
 for scientific interpretation. These are the injective or one-to-one
 mappings, defined by: if a = b and a = c, then b = c. Only one value
 of V can correspond to a given ratio D/T; hence the mapping inter-
 preted as the definition of velocity must be one-to-one. The source of
 this imperative is scientific rather than mathematical. There is no
 reason why functions must be one-to-one on mathematical grounds
 alone. Mathematically, the falling-bodies function D = jgt2 can be
 one-to-many because D is the same for t = +1 and t = -1. But nega-
 tive numbers of time units do not make any physical sense; stones
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 cannot fall for minus ten seconds. Therefore, scientists interpret only
 that part of the function where t > 0.

 As Spaulding (1960: 437-56) has pointed out, there is a second

 imperative that restricts the interpretation of mappings. Empirical

 entities have dimensionality. Length has dimensionality L, area has
 L2, acceleration has LT-2, etc. The dimensionality of both sides of a
 function must be the same if the function is to make any empirical
 sense. "Nine cubic feet equal one square yard" is a meaningless defi-
 nition because the two sides are different (L3 #A L2 ); "27 cubic feet
 equal one cubic yard," on the other hand, does make sense, since
 its dimensionality is homogeneous (L3 = L3). Cameiro (1967:

 234-43) has published a function (N = 0.6P0.594) intended to ab-
 stract his empirical observation that the number of organizational

 traits in a single-community society is roughly equal to the square

 root of its population. The dimensionality of this function is N = Pi,
 which is not homogeneous. It could be recast by taking logarithms,
 which are dimensionless numbers, and saying that log N = 0.594 log
 0.6P. This would be a dimensionally homogeneous statement of a

 law of cultural evolution. Or one could define a new variable, "socio-
 cultural complexity," with the ratio 0.6P? 594/N. The dimensionality

 of this scientific entity would be PN-1. This variable might be quite
 helpful in future studies of cultural evolution.

 THE SET RI'

 Frequently, an empirical event in science requires more than one
 number for its description. Consider a tribal economy involving

 hunting, fishing, farming, and trading. Its organization can be de-
 scribed by listing the time allocations devoted to each of these pur-

 suits, i.e., by the 4-tuple (X1, X2, X3, X4). The subscripts refer to a spe-
 cific economic pursuit, and the x's to the average number of hours
 per week each family spent in that pursuit. From a scientific point of

 view, each component of this 4-tuple measures temporal commit-
 ment to one economic pursuit, and the 4-tuple as a whole describes
 a particular organization of tribal culture. From a mathematical point
 of view, this 4-tuple can be interpreted as one element of a four-fold
 Cartesian product of the set R with itself, i.e., one element of the set
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 R4. This set is defined by R4 = R X R x R X R. Geometrically, this

 4-tuple represents one point of a four-dimensional space, and the set

 R4 represents all the points of this space. These concepts generalize

 immediately. The set Rn is the set of all ordered n-tuples of real num-

 bers, i.e., an n-fold Cartesian product of the set R with itself. It is

 called Cartesian n-space, or simply Rn. Geometrically, Rn is an n-di-

 mensional space. Algebraically, Rn is the canonical example of a

 finite-dimensional real-vector space (Abraham 1966: 21).

 Within a vector space, the mapping a is essentially preserved, ex-

 cept that two additional vectors are obtained by adding correspond-

 ing components:

 a : RnxR-> Rn [(x1, x2,. .Xn),

 ( Yl, Y2, . . .,Yn) ] >4 (xI. + Yl, x2 + y2, . ,Xn + Yn) )

 This mapping permits time allocations for two different weeks to be
 added together in a vector space. The mapping ( is somewhat differ-

 ent here, and is called scalar multiplication (this must be kept dis-

 tinct from "scalar product," to be discussed later). Scalar multiplica-

 tion is defined by the mapping

 3 : RxRn -> Rn : [a, (yl y2,. ..yn) ] - (ay, ay2)***)ayn).

 This mapping permits all time allocations of economic activities to

 be doubled, should the tribe suddenly work twice as hard. In other
 words, the components of a vector can be multiplied by any real num-

 ber once scalar multiplication has been postulated. A vector space,

 then, is defined by the triple Rn - (RRn, a, (3).

 It must be pointed out that there exist vector spaces other than Rn.
 Any set satisfying the postulates of a field can supply components for

 a vector space. One example is the set (0, 1), with the mapping a

 defined by 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0. Thus the vector space Rn

 is just one member of the category "vector space V over field F."

 Abraham (1966: 25) points out that in many physical and social

 science applications of mathematics we encounter vector spaces for

 which the underlying set is not R"Z. A variety of sets replace the
 n-tuples used in Rn. These more general spaces are called abstract

 or real-vector spaces, instead of Cartesian space. Although this point
 is likely to be of critical importance to the future of mathematical an-

 thropology, we are not in a position to develop it further here.
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 A good deal of anthropological data can be abstracted as elements

 of a vector space. Alternatively, the mathematical concept of vector

 can be interpreted empirically in many ways. In archaeology, for ex-

 ample, seriation diagrams are nothing more than stacks of vectors;

 each mathematical component measures the relative frequency of
 each pottery type found at a site. In analyses of social organization,

 vectors can describe the number of people in different social groups.

 For example, among the Shoa Galla of Ethiopia, vectors record the

 percentages of people in each age grade at a point in time (Hoffmann

 1965). Buchler and Selby (1968b: 63-67) have used the same pro-

 cedures in their analysis of Freeman's study of the Iban family sys-

 tem in Borneo (1962). In my own analysis of the economic organi-

 zation of tribes, vectors were used to describe the time allocations of

 an upper Amazonian village (Hoffmann 1966: 11-15).

 TIIE MAPPING Rn -. R

 In science it is often necessary to associate a real number with a vec-

 tor. We have already discussed the association of real numbers with

 one another, i.e., mappings of the form R -> R. We will now consider

 the anthropological significance of mappings of the form R" -> R.

 Although there are an unlimited number of these mappings, the sub-

 set partitioned off by the postulates for a norm is of particular interest

 to scientists. A norm associates a real number ljvjl with a vector v
 under the following postulates: llvll = 0 (the norm of the zero vec-
 tor is zero); llvll > 0 (the norm of a nonzero vector is positive);
 llv + wll < llvll + llwll (the norm of the sum of two vectors is less
 than or equal to the sum of the norms of these vectors); and llkvjl =
 kllvll (a norm can be multiplied by a real number). A vector space
 in which a norm can be computed for each vector is called a normed

 linear vector space, or simply a normed space.

 One of the first anthropological interpretations of a norm was made

 by Randall. Although his entire argument (1968: 73-75) is too com-
 plex to review here, it deals with the analysis of adaptation.

 Various changes in social and cultural systems require an adaptive endo-
 crine response in each human witness. I have suggested that these systems
 can be usefully connected so as to create a general human adaptation sys-
 tem. .. . Moreover, adaptation is a variable that depends on the environ-
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 ment (i.e., the human systems output vector). Hence I will call the variable
 "the instantaneous biological adaptation of a human system." . . . The evi-
 dence suggests that with appropriate sampling techniques, a biochemical
 measure of community stress could be obtained for any particular time and
 population. Furthermore, physiological growth and natural increase rates
 appear to entail no serious obstacles to measurement. Thus, measuring in-
 struments exist for the establishment of an adaptation norm on a linear
 model of the human adaptation system.

 THE MAPPING Rn X Rn -* R

 Frequently, scientific investigations require that a number be asso-

 ciated with a pair of elements in a vector space. "What is the dis-

 tance, or length, between the beginning and the end of an arrow-

 head?" This question sounds trivial, but the mathematical system

 "vector space over R" is unable to deal with it. Vector spaces have

 one important limitation: their elements do not constitute a totally

 ordered set. Although it is plausible enough to call the element
 (2, 3, 5) "smaller" than the element (4, 6, 10), how would one rank

 (8, 1, 3) vis-a-vis (2, 10, 7) ? In fact, there is no way to do so. A pri-

 mary reason for introducing numbers into science is to compare the
 magnitude of different quantities. In vector spaces, however, we can-

 not even tell which of two "numbers" is larger than the other, let

 alone specify how much larger. What is missing is the mapping
 Rn x Rn -, R, which is not defined in a vector space. Among other

 things, this mapping would provide a mathematical tape measure

 that could find the distance between two vectors; that is, it could be
 developed into a norm for calculating the "length" of a vector. The

 total order relation < could then be defined on the set of elements
 that make up that vector space.

 A very important set of mappings of the form Rn x Rn -> R are

 the metrics, or distances. These functions are measures in the mathe-

 matical sense, and associate numbers with such concepts as "length."

 A metric is a real-valued function d defined on X x X (ordered pairs

 of elements of a set X). It conforms to the following postulates:
 d(A,B) > 0 (the distance from one element to another is never
 negative); d(A,A) = 0 (the distance from an element to itself is

 zero); d(A,B) = d(B,A) (the distance from an element A to an

 element B is the same as the distance from B to A, hence we speak
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 of the distance between A and B); d(A,B) > 0 if a #, b (the dis-
 tance between two distinct elements is positive); and d(A,C) <i

 d(A,B) + d(B,C) (the length of one side of a triangle is less than

 or equal to the sum of the lengths of the other two sides). The metric

 d( A,B) is a real number, called the distance between A and B. This

 definition of metrics applies to any abstract or numerical set, although

 in science we deal largely with sets whose elements are numbers or

 n-tuples of numbers.

 We can now define the mathematical systems called metric spaces

 as all sets within which a distance can be computed between any two

 elements. Anthropology is scarcely the only science in which con-

 cepts are defined and evaluated by a "distance between two vectors."

 As Randall (1968: 41) points out:

 Temperature in chemistry, free energy in quantum mechanics, entropy in
 thermophysics, selective information in communication theory, and GNP
 in Western economics all derive from the same general linear metric theory.
 Concretely, they are measurements of the behavioral output of an entire
 system. Abstractly, they are the distances between vectors in a metrized
 linear phase space.

 If vectors are to be used as abstractions of empirical data (and no

 viable alternatives are in sight), then one must partition the general

 vector spaces from those that are metric spaces as well. This parti-

 tion can be constructed with the concept of norm; normed vector

 spaces are also metric spaces. This is so because the norm of the differ-

 ence of two vectors is a mapping that conforms to the distance postu-

 lates: d(v,w) =- llv - wl. This norm, interpreted as a distance, is
 called the induced metric on V. Every normed space associated with

 the induced metric is a metric space. The mapping Rn x Rn -i R is
 obtained by subtracting from each component of v the corresponding

 component of w, and taking the norm of the resulting vector as the

 distance, i.e., the element of R.

 Lipschutz (1965: 114) reminds us that metric spaces are not as

 simple as they may appear to be.

 A metric space is a topological space in which the topology is induced by
 a metric. Accordingly, all concepts defined for topological spaces are also
 defined for metric spaces. For example, we can speak about open sets,
 closed sets, neighborhoods, accumulation points, closure, etc., for metric
 spaces.
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 It must be stressed that there exist an unlimited number of metric

 spaces, defined by exotic distance functions, but that only a very few

 of these have been interpreted by scientists. Einstein did use an ex-

 otic metric with stunning effect to predict the curvature of astronomi-

 cal space in the neighborhood of a star. But the garden-variety metric

 invented by Pythagoras and now generalized as the Euclidean metric

 continues to be more generally useful in science. Like a homely but
 extraordinarily skillful wife, it is not to be despised. This metric is
 called the Euclidean metric on Rn:

 d(A, ) [E, (a-b )2 ]

 The metric space Rn, with the Euclidean metric, is called Euclidean
 n-space, or En. Within En one can define such familiar geometric en-

 tities as distance, angle, area, volume, and even the continuity and
 convergence to a limit that give us calculus (Abraham 1966: 79).

 In computing the Euclidean metric we must multiply two vectors

 together. Unfortunately, this operation is not defined in any of the

 mathematical systems we have considered so far. Therefore some

 form of vector multiplication must be explicitly postulated before

 Euclidean space can be separated from non-Euclidean spaces. Vec-

 tor multiplication will be a mapping of the form Rn x Rn -> R. Among

 the unlimited number of these mappings we select one, called stan-

 dard scalar product and defined by the mapping y:

 n y:Rn x Rn-- R: (xI , X_9 , XI,), (YI , Y2, *** yn) ]>xiyl, .
 4 = 1

 We take corresponding components of two vectors, multiply them

 together, and then add up all of the products. This will result in a
 single real number. Thus we have constructed a new mathematical

 system: En= (Rn ,y).
 It is quite possible to take the same vector, instead of two different

 ones, and multiply its components by themselves in the same way. It

 can then be shown that the square root of the sum of these products

 conforms to the postulates of a norm. In other words, if x = (xl, x2,
 ... , xn), a norm of x can be defined as jJxjj - [(Xi)2 + (x2)2 + ... +
 (xn )2] i. This norm is called the Euclidean norm on Rn. It is a gener-
 alization of the familiar expression for the distance from the point x
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 to the origin. In other words, it corresponds to the distance between

 the zero vector 0= (O1 02, * *. ) On) and the vector x =(xl, x2, ....
 xn). We define this distance to be the "length" of the vector x. Mea-
 suring the distance between two points of En (i.e., implementing the

 Euclidean metric) involves isolating the line segment connecting

 both vectors by subtracting one vector's components from the other's;
 one end of this line segment is then moved down to the origin, and

 the line's length computed with the Euclidean norm.

 Anthropological analyses involve geometric as well as algebraic

 properties of En, to which Gardner (1968) provides an accessible
 introduction. Consider an n-sphere in En, i.e., the locus of points at a

 given distance from a point:
 n

 E (X,) 2= C. 4 = c1
 4=1

 A 1-sphere consists of two points on a line on each side of a center;

 a 2-sphere is a circle in a plane. The surface of an n-sphere has a
 dimensionality of (n - 1); thus a 3-sphere's surface is two-dimen-

 sional, whereas a 4-sphere's is three-dimensional. The cross section

 of a 2-sphere (i.e., a line cutting the circle) is a pair of points; that
 of a 4-sphere is a 3-sphere. A 4-sphere moving through E3 would first

 appear as a point, become a tiny sphere growing to its maximum cross

 section, and then diminish and disappear. The diagonal of a unit cube

 in E2 is the diagonal of a square, and its length is V2. Similarly, a

 line of length V/3 will fit into a unit cube in E3, and a ten-foot fishing
 pole will fit diagonally into a unit cube of E100. Such generalizations
 cannot be made mechanically, however. The numerical volume of a

 unit sphere in R3 is 4.1+; in E4 it is 4.9+; and in E5 it is 5.2+. But
 in Es it decreases to 5.1+. In fact, as n approaches infinity, the vol-
 ume of a unit sphere approaches zero. Anthropological applications
 of En involve a geometric figure called a hyperplane. Consider the
 points that make up E2. These are two-component vectors of the form
 (x1, x2). Next, take a pair of real numbers, a1, a2 . When these are

 multiplied with the vector components and added together (a1x1 +
 a2x2), the sum is another real number, b. There are an unlimited
 number of vectors in E2 that conform to the condition

 2

 , agxi = b
 4 =1
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 and an unlimited number that do not. The vectors that satisfy this

 function consist of a straight line in E2. When n = 3, the function

 n

 2 a,xt = b
 4=1

 defines a plane in E3. When n > 3, the function defines a hyperplane

 in En. If each vector component measures the number of hours per

 week spent by a family (or tribe) on a given economic pursuit, and

 if the corresponding real number measures the number of dollars (or

 whatever) produced by one hour of that activity, then b measures the
 total payoff of a week's economic activity.

 Once a particular payoff has been observed in the field, one can

 establish an unlimited number of alternative time allocations that will

 yield the same payoff as the observed one. The vectors describing

 these allocations will all lie within (and indeed constitute) one hyper-
 plane:

 , aix, = b .
 .41

 Somewhere in En there exists a point (or vector) whose components

 generate this payoff with the least expenditure of time. This vector

 represents the maximum integration of the tribe's economy, and can

 be isolated by linear programming techniques. The "distance" be-
 tween the observed vector and the vector of maximum economic in-

 tegration can be computed and used as a measure of cultural integra-

 tion. In other words, Kroeber's concept of "cultural intensity" can be

 abstracted as a line segment in En (Hoffmann 1966); the "distance"
 between the beginning and the end of this segment measures the

 magnitude of cultural intensity. Further anthropological applications

 of these procedures are being developed with great energy by Buch-
 ler ( 1968).

 THE MATRIX Rm x n

 An empirical event in science often requires more than an n-tuple

 of numbers for its description. Consider a village social system that

 involves both age and class distinctions. Its organization at one point

 in time can be described by listing the number of people in each of

 the six social states:
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 age 10-20 age 21-40 age 41+
 social class #1 5 10 6
 social class #2 8 40 9

 The social system of this village at that point in time can be described

 mathematically by the rectangular array

 (5 10 6

 \8 40 9/

 This turns out to be an element of the vector space R2X3.

 We establish this mathematical interpretation of the event by not-

 ing that its data can be written on one line: 5, 10, 6, 8, 40, 9. First we

 run through the three age states of the first social class: x11 (=5),

 x12 (=10), x13 (=6). Then we list the age states of the second: x21,

 x22, x23. More generally, one can form an n X m-tuple, ( x112, , . .
 X1n > X21 ,X22 ... ,* X2n X * * * , Xm1 , Xm2 . . > Xmn), which describes a rec-
 tangular array of data made up of n columns and m rows. Such a

 mathematical expression can be interpreted as an element of an

 m x n-fold Cartesian product of the real numbers: Rmxn. The a map-

 ping can be defined on the set Rmnxn; empirically, this reflects the fact

 that data from two villages can be combined by adding the people in

 corresponding social states. The ( mapping can also be defined on
 Rmxn; hence the number of people in each social state can be multi-

 plied by a scalar if the population doubles over a period of time. In
 other words, the set Rm Xn has the algebraic structure of a real vector

 space: Rmxn = (Rmxn, a, ().
 An element of this space is called an n x m real matrix. The set-

 theoretic definition of these matrices is somewhat lengthy (Abraham
 1966: 50-59) and will be omitted here. However, we can note two

 novel properties of the system Rmxn. An operation called matrix mul-

 tiplication can be defined by the mapping ,u: Rmrxn x Rnxp -> RmrxP.
 However, the number of columns in matrix A must equal the number

 of rows in matrix B if the product AB is to be defined. Moreover,

 matrix multiplication is not necessarily commutative (AB L BA).
 Matrices can be rectangular or square; in the latter case, m = n.

 Square matrices can be mapped into the real numbers by computing

 their determinants.

 Events that occur between two points in time are particularly im-

 portant in science. Consider a tribe whose social structure contains

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 68 HANS HOFFMANN

 three states (however defined): S1, S2, S3. Next, consider the num-
 ber of people in each state as the culture is observed at two points in

 time: Sll, S21, S31 and S12, S22, S32. We are interested in such questions

 as: "How many people in S12 were born of fathers in Si', in S21, and
 in S31?" Say that these numbers are 10, 55, and 5. This information

 can be recorded as a column vector of a 3 x 3 matrix:

 S12 S22 S32

 Sli 10
 S21 55

 S31 \

 Similarly, the values of the other components can be entered in the

 array, perhaps giving the matrix

 (10 25 30

 SS 60 35
 S 25 5

 This square matrix is an element of a vector space abstracting one
 aspect of culture change.

 THE MAPPING Rm x n X Rn x P v Rm x p

 It is entirely appropriate to consider vectors as row matrices, i.e.,
 Rn = RI x '1. These can abstract a variety of anthropological data: the

 number of people in n social states, the number of man-hours spent

 on n economic activities, the number of potsherds of each of n types
 found at one site, etc. If after a period of time, the culture has
 changed to a different configuration, the new data can again be rep-

 resented as a space of row matrices. Culture change, then, can also
 be abstracted as a mapping that takes each element of the first vector

 space into an element of the second. Such mappings are of the form
 Rxn x Rn xn > Rx n. Here, R xn is interpreted not as an event, but

 as a linear transform that maps one vector space into another. It can

 be proven that the set of all linear transforms on a vector space is
 itself a vector space. A good deal of culture theory can probably be
 abstracted by using this theorem.

 The components of 1 x n matrices are sometimes converted to ra-
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 tios: "10 people in Si" becomes "10/85 of the 85 people in the tribe

 belong to S1 ." Since the components are defined to exhaust the rele-

 vant social states, the ratios will add up to one. Vectors of this kind

 are called probability vectors. The rows of a matrix may be similarly

 treated, in which case it becomes a matrix of transition probabilities.

 Although the mathematical properties of this subset of RI X are more

 restricted than those of a vector space, they are of extraordinary im-

 portance to all the sciences (Bharucha-Reid 1960). A transform of

 the form

 (10/65 )

 \ ~~5/35/
 will map a 1 x n probability vector into the corresponding vector

 one time unit in the future. The second power of this transform (the

 transition matrix multiplied by itself) will map the probability vec-

 tors into the corresponding vector two time units in the future. The

 nth power of this transform, which can be readily computed using a

 theorem on regular Markov chains, predicts the ultimate fate of any
 initial probability vector (on the condition that the transition matrix

 remains fairly stable over time). I have used this structural feature

 of transition matrices to investigate the stability of Ethiopian age
 grades (1965), and Buchler has applied it to the Iban bilek family
 (1968: 63-66).

 Other subsets of Rnxn are used in anthropology, even though their

 mathematical structure has not yet been investigated to any great

 extent. Instead, certain properties of the transforms are established

 empirically, and it is postulated that these will hold in similar cul-

 ture-change situations. For example, Dethlefsen and Deetz (1966)
 have established empirically that the 1 x n matrices of potter-type

 ratios will indeed produce the battleship-shaped curves postulated in

 seriation (1966). Elsewhere, these authors also point out that the

 curves will appear somewhat different to archaeologists moving in

 different directions or at different time rates from one another (Deetz

 and Dethlefsen 1965). In any event, the transforms that map one site
 into the next in time can reduce the difference between components

 of the corresponding vectors of type ratios to a minimum. From this
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 empirically validated postulate the Aschers have developed a com-
 puter program that orders a collection of sites chronologically (1963:
 1045-52).

 Computer simulations of an entire social system may be inter-
 preted as the operation of Rn Xn transforms on an extensive matrix of
 social categories. The transforms are assembled from a variety of
 heterogeneous components, such as life expectancies, population data,
 and mathematical functions that abstract marriage rules. These are
 built into a transform by the aptly named Monte Carlo method. Un-
 fortunately, the mathematical structure of these transforms is very
 complex, and they cannot easily be applied to more than one prob-
 lem (Gilbert and Hammel 1966).

 A NOTE ON THE MATHEMATICS OF KIN-TERM FUNCTIONS

 In recent months, several advances have been made in the seman-
 tic analysis of kinship lexicons, i.e., of kin-term functions.* These
 are mappings of kin types onto a set of kin terms, mappings of lexi-
 cal items onto semantic points (Kay and Romney 1967: 13; see also
 Wallace and Atkins 1960: 70, and Kay 1966: 20), or other mappings
 on a set of kin terms. Kay (1968: 221-22, 253-54) has developed a
 function that generalizes the distinctions between Dravidian cross
 and parallel. Sanday (1968) has used information-processing theory
 to model kin-term naming behavior.

 Since mathematical theory has evolved primarily as a Euro-Ameri-
 can conceptual tool, it would be foolish to assume that Iroquois,
 Omaha, and other kin-term functions can necessarily be structured
 by any known mathematics. Conventional mathematics may be use-
 less in constructing isomorphic or homomorphic models of kin termi-
 nology; if so, the several existing foundations for an anthropology-
 specific mathematics may be more helpful (e.g., Romney and D'An-
 drade 1964, Lamb 1965: 56, Hammel 1965). On the other hand, kin-
 term functions may be unrecognized varieties of previously studied
 mathematical functions (or mappings ). In this case, a formal identi-

 e This section was contributed by Robert A. Randall, University of California
 at Berkeley.

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 MATHEMATICAL ANTHROPOLOGY 71

 fication of the appropriate class of mathematical mappings would be

 an invaluable aid to further analysis.

 In mathematics, it is usual to characterize a space by the mappings

 defined on a set. A semantic space for kin terminology would be a
 set of kin terms on which various functions are defined. This was evi-

 dently Wallace and Atkins's meaning (1960: 70) when they defined

 a semantic space as a group of logical predicates related by certain
 logical rules, "mapping of particular sets of terms on semantic space."

 A paradigmatic mapping involves three "Boolean" operations: set
 union U (and/or), set intersection n (and/also), and set comple-

 mentation ~- (not). These set operations are fundamental to mathe-
 matical logic, and they appear to be almost as useful in semantic
 analysis (cf. Kay and Romney 1967). At first glance, the structure of

 semantic spaces might appear well-defined, especially if one accepts

 Wallace and Atkins's references to "algebra" and "Boolean algebra"
 (1960: 62) uncritically. But in fact, Wallace and Atkins employ the

 weakest of all structuring tools, the algebra of sets. The very limited

 payoffs that derive from this choice will become more evident if we
 review the several mathematical meanings of the term "algebra."

 In its most general sense, an algebra is any non-empty set, to-

 gether with a binary operation (o) from A x A into A (Suppes 1957:
 252). Wallace and Atkins gave kin terminology an algebraic struc-

 ture because "the algebra of sets" includes two binary operations ( U

 and n ) and the "unary" operation of complementation. However,

 unrestricted set operations are so general that most mathematicians

 do not accord them structuring capabilities; instead set operations

 are simply assumed in all meaningful mathematical discourse. For

 this reason, set theory is an insufficient structuring tool for semantic

 space. But Wallace and Atkins do not suggest any other structure. In
 particular, their semantic space is not actually structured by Boolean
 algebra.

 A Boolean algebra of sets is a non-empty class A of sets (in a uni-
 verse U) that is closed under the set operations of union, intersec-
 tion, and complementation. With these restrictions, if "male and also
 lineal and also first ascending generation" is a kin term, then "not
 male and also not lineal and also not first ascending generation" must

 be a kinship term as well. Since this and other closure transforma-
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 tions by Boolean operators are not found in familiar kinship lexicons,
 Boolean algebra is an inappropriate structure. Hammel (1965: 65)

 realized this when he suggested that the term "kinship algebra" is
 inexact because semantic analyses usually deal with "description, not

 manipulation." Semantic spaces should be structured by the logic sys-

 tems that they model, not by the kin-term sets themselves. Although
 sets of terms have many descriptions under the algebra of sets, they

 have far fewer when both terms and operations between terms are

 modeled. Wallace and Atkins (1960: 74) did suggest a further pos-
 sibility: paradigms with the non-Boolean operator of genealogical re-
 lation ("of": Si o Fa -> FaSi) will have a different structure from

 those composed solely of conjunctive and disjunctive operators. How-
 ever, the authors did not develop this idea.

 Wallace and Atkins have further confused their space structure by
 an unfortunate analogy with the third sense of the term "algebra."

 Algebraic spaces are subtypes of the class of spaces (L) called linear

 (vector) spaces (Simmons 1963: 208).* It happens that the mathe-
 matical theory of dimensions makes mathematical sense only when

 the structure involved is linear. Briefly, let S = {x1, x2, . . ., xn} be a
 finite, non-empty set of vectors. If there do not exist non-zero num-

 bers (at) such that a,x1 + a2x2 +. .. + acxnx = 0, then S is said to be
 linearly independent. The largest such independent subset Smax in L

 is called the basis of L (ibid.: 196). The number of elements in Smax
 is the dimension of L (ibid.: 200). This concept of dimension cor-

 responds closely to the notion normally employed in Euclidean ge-

 ometry.

 Since algebraic spaces are also linear spaces, they possess mathe-
 matical dimensions. However, Wallace and Atkins (1960: 70) do not
 follow this usage. Rather, features (di, dj,. . . , dn) in mutually ex-
 clusive subsets (a,) of a set of empirical phenomena (A), are said to
 be part of a single dimension (D), if they are contraries to one an-
 other. By this criterion, at least one dimension on A must be logically
 independent of at least one another, but the remaining dimensions
 can be logically dependent. Semantic dimensions are not required to

 be linearly independent, nor is the space structure really asserted

 * See also the discussion on pp. 58-62.
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 to be algebraic or even linear. In short, the authors do not establish

 a general relation between semantic dimensions and mathematical

 dimensions, nor even a very close analogy.

 In mathematical terminology, Wallace and Atkins's semantic spaces

 are not mathematical spaces, but form what is usually called a prod-

 uct set. Each semantic dimension is actually a coordinate set, and the
 individual values on these dimensions (i.e., features) are coordinates

 (cf. Simmons 1963: 24). Mathematically, a paradigm is a mapping

 of a set of terms into a semantic product set (X = X1 X X2 x ... x
 Xn), not into a semantic space. Each element of this semantic set is

 not a vector, but an n-tuple of coordinates x = (x1, x2, .. ., x,) some-

 what like Kay and Romney's semantic point (1967: 6); hence the

 individual coordinates (xi) are not vector components, nor are their

 containers (the X,'s). Semantic components and vector components
 have quite different referents: the first refer to features (coordinates)

 on a semantic dimension (a coordinate set); the second refer to, co-

 ordinates on a linear dimension (a coordinate set of a linear space).

 These distinctions would be trivial terminological quibbles if Aoki
 (1966) and others (Buchler and Selby 1968: 171ff) had not used

 "matrices" (column n-tuples) as a means of performing Lounsbury-
 like "transformational analyses" on Nez Perce, Omaha, and Iroquois

 terminological systems. These authors suggest that transformation
 rules can be viewed as binary operations on bundles of features
 (i.e., pairs of n-tuples). Since these operations produce an algebraic

 structure, they necessarily produce a space. In investigating kin-term

 functions, we can try to probe the structure of this space; in particu-
 lar, we can try to discover whether the Aoki-Buchler-Selby separa-

 tion of kin types into features corresponds to the algebraic structure

 generated by their selected binary operation.
 Mathematical separation properties are studied in topology. Hence

 we can use topology to discover whether various separations of kins-

 men by semantic features (Aoki 1966: 361, Buchler and Selby 1968:
 171) correspond to separations in the structure of the space. We must

 first define a topology on a set of kin terms structured by genealogical

 relations, and then compare the properties of the topology to the

 properties of the semantic analysis. Briefly, a topology (T) is a class

 of subsets of a non-empty set X for which (1) the arbitrary union of
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 every class of sets in T is a set in T and (2) the intersection of every
 finite class of sets in T is a set in T (Simmons 1963: 92). A set X con-
 taining a topology is called a topological space, and its subsets are
 "open sets." A topological space that cannot be represented as a dis-
 joint union of two non-empty open sets is said to be connected (ibid.:
 143). This definition of connectedness corresponds closely to the in-
 tuitive concept of "a piece" in Euclidean geometry. A subspace of a
 topological space is called a topological component if and only if it
 is connected and is contained in no larger connected topological sub-
 space (ibid.: 146). In short, there is a qualitative difference between
 the structure of topological components and that of surrounding
 space.

 Boyd (1965: 5) recognized that semantic components derive their
 reality from the space structure in which they exist. In investigating
 Kariera and Ambryn marriage classes and American kin termino-
 logical systems, he used a partitioning technique called the substitu-
 tion property to show that some components of these systems are
 dependent on others. This ordering relation redefines the variables
 in the semantic space (the components) as entities that possess a
 high degree of structural coherence under the operations of the space.

 With Boyd's ordering relation, anthropologists can build a semantic
 space from well-known mathematical functions, since ordering prop-
 erties alone are enough to convert semantic components into topo-
 logical components. For example, assume that the consanguineal Fox
 semantic components of sex (S), lineage (L), and generation (G)
 are placed under the binary operation of genealogical relation. It can
 be shown that a Fox genealogical rule for predicting kin terms is
 fully determined (i.e., single-valued) only if the generation semantic
 feature depends for its value on the lineage feature, and the lineage
 feature depends for its value on the sex feature (S -> L - > G). Since
 operations are fully determined (by definition), the structure of the
 semantic space necessitates the modeling of this dependency.
 These constraints become more obvious if we consider two alter-
 native interpretations of this same Fox structure. Suppose certain
 features of the ordering relation are selected to produce the homo-
 morphic model of the Fox system that is called a complemented dis-
 tributive lattice. This structure can be shown to be a Boolean algebra
 of sets (Simmons 1963: 345) that is isomorphic to a subtype of a space
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 with the separation properties of the "totally disconnected" Hausdorff

 topology (ibid.: 353). Under this topology, each semantic component

 of Fox (S, L, or G) is a topological component, but the dependency

 between semantic components is not preserved because neither Bool-

 ean algebra nor lattice theory abstracts it. By contrast, the most inter-

 esting aspect of Fox and other "Omaha" systems (generational skew-
 ing) is preserved by the so-called "ordering topology" (cf. Kelley

 1955: 58). In this space, the topology T = { (S,L,G), (S,L ), (S), 0}
 is connected, since it cannot be disjointly partitioned; thus the entire

 semantic space has only one topological component. In short, iso-

 morphic models of particular systems must be homomorphically mod-

 eled by the ordering topology. Without this structure, manipulations

 of feature bundles will not be unique, and hence will not be trans-
 formations. With this structure, kin-term functions will generate a

 mathematically regular semantic space.

 BIBLIOGRAPHY

 Abraham, R. 1966. Linear and multilinear algebra. New York: W. A. Ben-
 jamin.

 Aoki, H. 1966. Nez Perc6 and Proto-Sahaptian kinship terms. Int. J. Amer.
 Ling. 32: 357-68.

 Ascher, R., and M. Ascher. 1963. Chronological ordering by computer.
 Amer. Anthrop. 65: 1045-52.

 Ashby, W. R. 1963. An introduction to cybernetics. New York: Wiley.
 Atkins, J., and L. Curtis. 1966. Game rules and the rules of culture. Paper

 presented at the Conference on the Application of the Theory of Games
 in the Behavioral Sciences, Montreal, Aug. 1966. Forthcoming in I. R.
 Buchler and H. G. Nutini, eds., Game theory in the behavioral sciences.
 Pittsburgh: Univ. Pitts. Press.

 Bharucha-Reid, A. T. 1960. Elements of the theory of Markov processes
 and their applications. New York: McGraw-Hill.

 Binford, L. R., and S. R. Binford. 1966. A preliminary analysis of func-
 tional variability in the Mousterian of Levallois facies. Amer. Anthrop.
 68 (2): 238-95.

 Boyd, J. P. 1965. Componential analysis and the substitution property. Pa-
 per presented at the Fourth Berkeley Meeting in Mathematical Anthro-
 pology, Berkeley, Calif., Dec. 1965. Forthcoming in Paul Kay, ed., Ex-
 plorations in mathematical anthropology.

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 76 HANS HOFFMANN

 Braithwaite, R. B. 1953. Scientific explanation. Cambridge, Eng.: Cam-
 bridge Univ. Press.

 Brewer, S. 1966. Sets, mappings, and totemism. Paper presented at the
 Sixty-fifth Annual Meeting of the American Anthropological Association,
 Pittsburgh, Nov. 1966.

 Buchler, I. R. 1964. Measuring the development of kinship terminologies:
 Scalogram and transformational accounts of Crow-type systems. Amer.
 Anthrop. 66: 765-88.

 1967a. Decision processes in culture: A linear programming ap-
 proach. Supplement I, Conference on the Application of the Theory of
 Games in the Behavioral Sciences, Montreal, Aug. 1966. Forthcoming
 in I. R. Buchler and H. G. Nutini, eds., Game theory in the behavioral
 sciences. Pittsburgh: Univ. Pitts. Press.

 1967b. Analyse formelle des terminologies de parent6 Iroquoises.
 L'homme 7: 5-32.

 1968. Economic anthropology. Paper presented at the Conference
 on Mathematical Aspects of Cultural Evolution, Binghamton, N.Y., May
 1968.

 Buchler, I. R., and H. A. Selby. 1968a. A formal study of myth. Center for
 Intercultural Studies in Folklore and Oral History, Monograph Series
 No. 1. Austin: Univ. Tex.

 1968b. Kinship and social organization. New York: Macmillan.
 Busacker, R. G., and T. L. Saaty. 1965. Finite graphs and networks. New

 York: McGraw-Hill.
 Carneiro, R. L. 1957. Subsistence and social structure: An ecological study

 of the Kuikuru Indians. University Microfilms, University of Michigan,
 Ann Arbor.

 1967. On the relationship between size of population and com-
 plexity of social organization. Sthwest. J. Anthrop. 23: 234-43.

 1968. Ascertaining, testing, and interpreting sequences of cultural
 development. Paper presented at the Conference on Mathematical As-
 pects of Cultural Evolution, Binghamton, N.Y., May 1968.

 Chomsky, N. 1965. Three models for the description of grammar. In Read-
 ings in mathematical psychology, Luce, Bush, and Galanter, eds. New
 York: Wiley.

 and G. A. Miller. 1965. Finite state languages. In Readings in
 mathematical psychology, Luce, Bush, and Galanter, eds. New York:
 Wiley.

 Deetz, J., and E. Dethlefsen. 1965. The Doppler effect and archeology:
 A consideration of the spatial aspects of seriation. Sthwest. J. Anthrop.
 21: 196-206.

 Dethlefsen, E., and J. Deetz. 1966. Death heads, cherubs, and willow
 trees: Experimental archeology in Colonial cemeteries. Amer. Antiquity
 31: 502-10.

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 MATHEMATICAL ANTHROPOLOGY 77

 Driver, H. E., and K. F. Schuessler. 1967. Correlational analysis of Mur-
 dock's 1957 ethnographic sample. Amer. Anthrop. 69: 332-52.

 Fitch, F. B. 1952. Symbolic logic. New York: Ronald Press Company.
 Freeman, J. D. 1962. The family system of the Iban of Borneo. In The de-

 velopmental cycle in domestic groups. Cambridge, Eng.: Cambridge
 Univ. Press.

 Gale, D. 1960. The theory of linear economic models. New York: McGraw-
 Hill.

 Gardner, M. 1968. Circles and spheres, and how they kiss and pack. Scient.
 Amer. 218: 130-36.

 Geoghegan, W. H. 1965. Information processing systems in culture. Paper
 presented at the Fourth Berkeley Meeting in Mathematical Anthropol-
 ogy, Berkeley, Calif., Dec. 1965. Forthcoming in Paul Kay, ed., Explo-
 rations in mathematical anthropology.

 Gilbert, J. P., and E. A. Hammel. 1966. Computer simulation and the
 analysis of problems in kinship and social structure. Amer. Anthrop. 68:
 71-93.

 Goldberg, H. 1967. FBD marriage and demography among Tripolitanian
 Jews in Israel. Sthwest. J. Anthrop. 23: 176-91.

 Grenander, U. 1963. Probabilities on algebraic structures. New York: Wi-
 ley.

 Grodins, F. S. 1963. Control theory and biological systems. New York:
 Columbia Univ. Press.

 Hammel, E. A. 1965. An algorithm for Crow-Omaha solutions. Amer.
 Anthrop. 67: 118-26.

 Helm, J. 1968. Essays on the problem of tribe: Proceedings of the 1967
 Annual Spring Meeting of the American Ethnological Society. Seattle:
 Univ. Wash. Press.

 Hoffmann, H. 1959. Symbolic logic and the analysis of social organization.
 Behav. Sci. 4: 288-98.

 1965. Markov chains in Ethiopia. Paper presented at the Fourth
 Berkeley Meeting in Mathematical Anthropology, Berkeley, Calif., Dec.
 1965. Forthcoming in Paul Kay, ed., Explorations in mathematical an-
 thropology.

 1966. A linear programming approach to cultural intensity. Paper
 presented at the Conference on the Application of the Theory of Games
 in the Behavioral Sciences, Montreal, Aug. 1966. Forthcoming in I. R.
 Buchler and H. G. Nutini, eds., Game theory in the behavioral sciences.
 Pittsburgh: Univ. Pitts. Press.

 1968. Mathematical structures in ethnological systems. In Essays
 on the problem of tribe: Proceedings of the 1967 Annual Spring Meet-
 ing of the American Ethnological Society. June Helm, ed. Seattle: Univ.
 Wash. Press.

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 78 HANS HOFFMANN

 Kay, P. 1964. A Guttman scale model of Tahitian consumer behavior.
 Southwest. J. Anthrop. 20: 160-67.

 1965. A generalization of the cross/parallel distinction. Amer.
 Anthrop. 67: 30-43.

 1967. On the multiplicity of cross/parallel distinctions. Amer.
 Anthrop. 69: 83-85.

 1968. Correlational notes on cross/parallel. Amer. Anthrop. 70:
 106-7.

 and A. K. Romney. 1967. On simple semantic spaces and semantic
 categories. Unpublished ms. Working Paper 2, Language-Behavior Re-
 search Laboratory. Berkeley: University of California at Berkeley.

 Kelley, J. L. 1955. General topology. Princeton, N.J.: Van Nostrand.
 Kolmogorov, A. N. 1950. Foundations of the theory of probability. New

 York: Chelsea.
 Lamb, S. M. 1965. Kinship terminology and linguistic structure. Amer.

 Anthrop. 67: 37-64.
 L6vi-Strauss, C. 1963. The structural study of myth. In Structural anthro-

 pology. New York: Basic Books.
 Lipschutz, S. 1965. Theory and problems of general topology. New York:

 Schaum.
 Manning, H. P. 1914. Geometry of four dimensions. New York: Macmillan.
 Metzger, D., and G. E. Williams. 1963. A formal ethnographic study of

 Tenejapa ladino weddings. Amer. Anthrop. 65: 1076-1101.
 Naroll, R. 1964. On ethnic unit classification. Current Anthrop. 5: 283-

 312.

 Nering, E. D. 1963. Linear algebra and matrix theory. New York: Wiley.
 Prince Peter of Greece and Denmark. 1963. A study of polyandry. The

 Hague: Mouton.
 Prindle, P. H. 1967. Tibetan polyandry: A mechanism of population con-

 trol. Unpublished master's thesis, State University of New York, Bing-
 hamton, N.Y.

 Randall, R. A. 1968. Anthropological systems synthesis: Mathematical
 methods and metrical mud. Unpublished master's thesis, State Univer-
 sity of New York, Binghamton, N.Y.

 Roberts, J. M. 1964. The self-management of cultures. In W. H. Good-
 enough, ed., Explorations in cultural anthropology. New York: McGraw-
 Hill.

 Romney, A. K., and R. G. D'Andrade. 1964. Cognitive aspects of English
 kinship terms. Amer. Anthrop. 66: 146-70.

 Sanday, P. R. 1968. The "psychological reality" of American-English kin-
 ship terms: An information-processing approach. Amer. Anthrop. 70:
 508-23.

 Sears, F. W., and M. W. Zemansky. 1955. University physics. Reading,
 Mass.: Addison-Wesley.

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms



 MATHEMATICAL ANTHROPOLOGY 79

 Simmons, G. 1963. Topology and modem analysis. New York: McGraw-
 Hill.

 Singh, J. 1959. Great ideas of modem mathematics. New York: Dover.
 Spaulding, A. C. 1960. The dimensions of archaeology. In G. E. Dole and

 R. L. Carneiro, eds., Essays in the science of culture. New York: Thomas
 Crowell.

 Spivak, M. 1965. Calculus on manifolds. New York: Benjamin.
 Suppes, P. 1957. Introduction to logic. Princeton, N.J.: Van Nostrand.
 Wallace, A. F., and J. Atkins. 1960. The meaning of kinship terms. Amer.

 Anthrop. 62: 58-80.

This content downloaded from 72.49.57.8 on Tue, 27 Mar 2018 02:14:10 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. [41]
	p. 42
	p. 43
	p. 44
	p. 45
	p. 46
	p. 47
	p. 48
	p. 49
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56
	p. 57
	p. 58
	p. 59
	p. 60
	p. 61
	p. 62
	p. 63
	p. 64
	p. 65
	p. 66
	p. 67
	p. 68
	p. 69
	p. 70
	p. 71
	p. 72
	p. 73
	p. 74
	p. 75
	p. 76
	p. 77
	p. 78
	p. 79

	Issue Table of Contents
	Biennial Review of Anthropology, Vol. 6 (1969) pp. i-vii+1-404
	Front Matter [pp. ]
	Language [pp. 1-40]
	Mathematical Anthropology [pp. 41-79]
	The Anthropology of Complex Societies [pp. 80-131]
	Social Organization [pp. 132-190]
	Trends in Genetics and Biological Anthropology [pp. 191-251]
	Law and Anthropology [pp. 252-300]
	Political Anthropology [pp. 301-386]
	Analytical Indexes to "Political Anthropology" [pp. 387-392]
	General Index [pp. 393+395-404]



