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Prerequisite Skills:

1.

(Functions) Be familiar with the concepts of constant, variable,
and function, including independent and dependent variable and the
notation y = £(x)., Previous exposure to quadratic and logarithmic
functions is desirable but not necessary.

2. (Graphing) Given a table of x and y valuves, choose an appropriate
scale and axis limits, and plot the points on standard (square-
grid) graph paper.

3. (Lines) Know that the slope-intercept equation for z Iime is y =
mx + b where m = slope and b = y-intercept. Know that the
equation of a line passing through the point (xo, yo) is y - ¥ ©
m(x—xo), where m = slope.

4., Know that: N

a) Ex1=x1+x2+...+xu
i=1
H N N
b) z (xi + ‘ji) = Z Xt ): ¥i
i=] i=] i=1
N
c} Z ex; = ¢ .E x;
i=] iz}
H
d} . z ¢ = Ne.
i=1

5. {Use of calculater) Given % table of % and y values, compute sums
such as Ix;, Ix;y;. and Ex;“ using a hand-held calculator.

Qutput Skills:

1. State four purposes for fitting an equation to data, and give an
example of each.

2. Fnow that experimental error is the difference between the
observed value of a variable and its hypothetical true value.
Enow that it 1s present in all real experiments.

3. Given a table of x and y values, make a ggatter diagram.

4, Given a scatter diagram (showing small variaunce in y for given x),
sketch a free-hand curve through the data points.

5. Given a list of y values, compute the mean and yariagnce. Know
that the variance is a measure of the scatter of the y values
about the mean,

6. Know that the least-squazes (LS) fit of s given type of equation y

= f(x) to data points (x;.y;), i = 1,2,3,...,N, is defined to be
the particular equation of that type that minimizes the sum of the
squares of the deviations

N
s= § (y; - fx 0l
izl



1. _THE BASIC PROBLEM

1.1 Introduction

Have you ever read an article in Scientific American,
Physics Today, Science or other periodical, and come across
a picture like this one:

ION Temperature Tl(keV)

0 1 L 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0 1.2

13 MW/Cm3

Normalized Power Pb/ne (1e”

(Source: Murakami, M., and Eubank, H.P., "Recent
progress in tokamak experiments,” Physics Today 32
(1979), %5, p.30.}

Some experiment has been performed to determine how
one guantity, ion temperature, depends on another gquantity,
normalized power. The results of the experiment are indi-
cated by the dots in the picture. Then someone has drawn
in the curve which "best fits" these data points. Perhaps
the equation for the curve has been determined.

pid you wonder how they knew where to draw the curve?
How can the equation for the curve be determined? Some-
times it is not obvious what type of curve to draw. Should
it be a straight line, a parabola, a log curve, or sSome
other type? Among all curves of the same type, which one
gives the best fit? What is meant by "best fit" anyway?

In this unit and its sequel, Unit 434, we shall con-
sider the problem of fitting a curve to data, We shall
take for our measure of goodness of fit the most commen
one-~the least-squares criterion. 1In this unit, you will
learn how to fit a line to data and how te tell if the fit
is a good one. 1In the seguel, you will learn how to fit
other common curves, using the computer.

The four examples that follow illustrate the purposes
and process of curve fitting., You need not understand all
the technical language.
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Example 1. The chemical engineers of a pilot plant
need a way to measure the organic acid content of a certain
chemical. Two methods are available: a relatively inexpen-—
sive titration method, and a more expensive method of ex-—
traction and weighing.

An experiment is carried out to determine how well the
acid number (x) obtained by titration can serve to estimate
the organic acid content (y) determined by extraction and
weighing. Twenty samples of the chemical are selected to
cover the range in organic acid content of interest. Each
sample is divided and analyzed by both methods. The re-
sults are shown in Table 1.

TABLE 1
ORGANIC ACID CONTENT
X ¥
Sample number Acid no. by Acid content by
titration {(mg) extraction (ml)

1 123 76
2 109 70
3 62 55
4 104 71
5 57 55
6 37 48
7 44 50
8 100 66
9 16 41
10 28 43
11 138 82
12 105 68
13 159 88
14 75 58
15 88 64
16 164 88
17 169 89
18 167 88
19 149 84
20 167 88

A computer analysis of the data is performed, which
determines that the linear equation that best fits the data
is y = 0.3216x + 35.46, Ninety-nine and one half percent
of the total variation in y is accounted for by this equa-
tion.



On the basis of this analysis, the engineers decide
that titration does give a reliable estimate of the organic
acid content; they will use this less expensive method.

Example 2., An introductory physics class performed an
experiment tc determine the latent heat of fusion of water.
{(This is the number of calories of heat absorbed by one
gram of ice as it melts.} Each of the 30 students started
with 55cc of water in an insulated container. Each student
added a different amount of ice {x) to the water and noted
the fall in temperature (y) of the water as the ice melted.
Their results are shown in Table 2,

TABLE 2
HEAT OF FUSION OF WATER

Weight of Ice (X}, grams 13.4 12,8 15.1 19.7 17.5
Fall in Temperature {y), C 19 19 22 30 27

19.3 12.5 11.5% 14.2 11.2 10.5 11.8 10.2 13.6 18.]
29 is8 1lg 21 17 16 17 16 20 29

17.8 18.1 14.2 15.9 18.3 19.3 13.9 15.6 10.7 18.5
27 28 23 25 27 29 21 24 16 28

17.2 15.0 14.2 19.0 17.2
25 22 20 28 26

According to theory, the fall in temperature is re-
lated to the amount of ice by the equation y = Bx/55, whereg
is the latent heat of fusion of water. The class esti-
rated B by finding the value of the slope m that made the
line y = mx fit the data best.

Example 3. A biologist wants to fermulate a theory
about the nervous system of the sea anemone. In particu-
lar, she is interested in how the response of an anemone to
a standard stimulus is related to its size. BShe has gath-
ered the following data on 21 specimens.

TABLE 3

RESPONSE OF SEA AENMONE TO STARNDARD STIMULUS

Size of Anemone (x), conventicnal units 0.2 3.9 5.8 7.8
Duration of Response {y), seconds 1.1 5.2 6.0 6.2
4.9 8.6 3.1 6.2 0.3 4,2 ©¢.9 3.5 1.8 3.7 6.9 4.7
5.9 6.6 4.5 6.3 2.2 5.3 2.2 5.0 3.1 5.1 6.0 6.C
2.5 1.6 8.2 5.3 1.9
3.8 3.3 6.3 5.7 4.8



Studying these data, she concludes that the duration
of the response (y) 1s related to the size of the anemcone
(x) by an equation of the formy = m log x + b. Her theory
will try to explain this in terms of the physiclogy of the
anemcne's nervous sytem,

Exgmple 4. In 1886, Sir Francis Galton published his
now classic experiments on the heredity of exceptional
traits. For a wide range of species, from yeast to man, he
showed that, with respect to specific measurable traits,
cffspring tend to be closer to the population mean
{average) than their parents. As he put it, the coffspring
"regressed” toward the mean.

For instance, with humans Galton noticed that children
of exceptionally tall parents tended to be tall, but not so
tall as their parents. Similarly, children of very short
parents tended to be short, but not so short as their par-
ents.

To support his theory, Galton measured 938 fully grown
children and their parents, and related each child’'s height
{y) to the mean height {x) of his parents, A& sample of his
data is presented in Table 4,

Galton plotted the data and found the line that best
represented the relation of y to x. The line had slope
less than one. If no regression toward the mean had been
observed, the best line would have been y = x. So his
theory was supported by his data.

TABLE 4
HEIGHTS IN INCHES OF 46 CHILDREN (y) AND THEIR PARENTS (x)

X ¥ X Y X ¥ X l V4

64.5| 63.2 67.5 }69.2 68.5 | 70.2 71.51 70.2
64.5 | 64.2 67.5 [ 69.2 68.5 [ 70.2
65.5; 72.2 67.5 [ 70.2 69.5 | 67.2
66.5 ] 65.2 67.5 | 71.2 69.5 | 67.2
66.5; 66,2 67.5172.2 69.5 | 68.2

66.5 | 67.2 68.5 [64.2 69.5 | 69.2
66.5 | 70.2 68.5 | 65.2 69.5 | 69.2
67.51 65.2 68.5 {66.2 69.5 [ 70.2
67.5 | 66.2 68.5 | 67.2 65.5170.2
67.5 | 66.2 68.5 (67.2 69.5 [ 71.2

67.51¢ 66.2 68.5 1 67.2 69,5 | 72.2
67.5 [ 67.2 68.5 | 68.2 69.5 [ 73.2
67.5] 67.2 68.5 | 68.2 70.5 [ 69.2
67.5 | 69.2 68.5]69.2 71.5 | 67.2
67.51 69.2 68.5 | 69.2 71,5 70.2




The s f Curv

45 examples show, fitting equations to data is used in
many different fields for various purposes. Some of the
purposes are:

a) To summarize masses of data to cbtain formulas or
curves for calibration, interpolation, or predic-
tion (Example 1).

b) To determine a meaningful constant, or to compare
sets of data by means of the constants in the
equation {Example 2).

c} To suggest the type of theoretical model to con-
struct (Example 3},

d) To confirm or refute an hypothesis or model
{(Example 4).

In each of these examples, some experiment was per-
formed to determine how a quantity y depends on a quantity
Xx. The object was to find a function y = f(x) that fit the
data well. First, the experimenter decided on the type of
function to use, In Examples 1, 2, and 4, this was a line
y =mx + b, and in Example 3, it was a log curve y =
m log x + b. The type of function chosen might be indi-
cated by theory (Examples 1 and 2), by the data itself
(Example 3), by the purpose of the experiment (Example 4},
or by past experience, convenience, or other means. ‘Then
some method was used to calculate the particular function
of that type that fit the data best. In Example 1, an in-
dication was also given as to how well the chosen functicn
fit the data. (It was said to account for 99.5% of the
total variation in y.)}

The type of curve chosen is cften a line. There are
several reasons for this. Many relations, like the one in
Example 2, are really linear, Other non-linear relations
can be made linear by a transformation of the variables, as
you will see if you read Unit 434. Sometimes one is inter-
ested only in a limited range of the variable x, and over
this range the relation may be approximately linear. (The
technique of interpolation, which you may have used to com-
pute logarithms, makes use of this.) BAlso a line may be
used simply for convenience in summarizing the results {as
in Example 4). The line is the easiest type of curve to
fit, but the method we shall use will generalize to non-
linear cases.

Finding the function that best fits the data is Gif-
ferent from the problems usually encountered in an algebra
course, There, one starts with a given function and finds

5



its values at certain points, or its zZeros, or where it is
equal to another function. Here, we are in effect given
the [approximate} values of the function at certain points,
and required to find the function.

In fact, we do not even know the exact values of the
function. Example 2 illustrates this. Students with the
same measured amount of ice observed different changes in
thermometer readings. One function cannot, of course, have
two y-values for the same x-value. We assume that there is
one "correct” or "true" value of y for each x, but due to
the limitations of the experimental technique, the observed
values of y differ from this by an unknown (small} amount.

Ex i m rror

The difference between the observed values of y and
the unknown "true" value is called experimental error
{error in the sense of upncertainty, not in the sense of
"mistake"). The sources of experimental error are numerocus
and sometimes hard to determine, let alone eliminate. Some
general sources are:

a) Measurement error. Any instrument of measurement
has a limited degree of precision. In Example 2,
for instance, the thermometer read only to the
nearest degree, introducing a possible error of
i0.5° in each value of y.

b) QUncontrolled variables. The background conditions
may vary from one measurement to another. For
example, some containers in Example 2 may have
been better insulated than others. The value of y
may depend on other variables besides x, and these
may not remain constant throughout the experiment.

c) amplin r . Results can be misleading because
of the small number of data on which they are
based, For example, the measurements in Table 4
may not represent the population as a whole.
Sampling error can be controlled, but not usually
eliminated, by taking large and wisely chosen
samples.

There are also human blunders, such as misreading a
thermometer or miscopying a number, and gystematic errors—-
errors that consistently bias the results in one direction.
In Example 3, a faulty thermometer that consistently gives
low readings would lead to systematic errors. Or, in Exam—
ple 1, a systematic error would result if the titrations
had been done incorrectly, giving values of x that were all
too large or too small. The best one can hope for is that,

6



by good experimental design and careful procedure, all

systematic errors and human blunders are eliminated and
that the remaining errors are small.

1.5 True Values

In some problems, the true value of y is meaningful
only as an averade. In Example 4, the height of the child
depends on so many uncontrolled factors {hereditary and en-
vironmental) that it cannot really be considered a functicn
of the parent's height alone. Nevertheless, among all
children whoge parents have the same height x, there will
be a definite average height. This will be considered the
"true™ value of y for that x, and the observed y's will
differ from it by apparently random amounts.

Thus, the data we must work with necessarily shows
some amount of variation or scatter from the "true™ wvalues.
The ever-present variation makes it impossible for us to
determine the true values, and hence the true function,
exactly. The best we can do is to come up with a good es-
timate of the "true" function. The curve joining the true
values of y for each x is called the regression curve,
after the work of Galton. The process of estimating the
regression curve is called regressjon analysis. One reason
regression analysis is valuable is that when large amounts
of data are used, some experimental errors cancel out so
that the value of y given by the fitted equation is a more
reliable estimate of the true value of y than the observed
value is,

Exercises

1.1 The equation in Example 1 will be used to estimate the organic
acid content from the titration results. What i1s the estimated
acid content for samples with these acid numbers by titration:
62, 100, 1597 Do the estimated values agree exagtly with the

experimental results? What are some possible sources of exper-
imental error in this example?

1.2 1In Example 2 (heat of fusion), the equation y = mx can be re-
arranged to give m = y/x, Estimate m by computing the mean
{average) value of y/x for the data in Table 2. What value for g
do you get by this method?

1.3 What sources of experimental error might be present in Example 37

1.4 1In Example 4, what is the average {mean) value of y for x = 66.5?
For x = 71.5? Do these values support Galton's theory?

1.5 State four purposes of fitting an equation to data. Give an

example 1llustrating each.



1.6 Find an example of curve fitting in Sciepnce, Scientific Americap,
or other periodical of your choice. Make an oral report on the
example, answering the following questions:

a) What was the purpose for fitting the curve?

b) What type of curve was used? (Free-hand, lime, parabola,
log, power curve, etc.)

c¢) Were the variables related by cause and effect, or more by
circumstance or common cause?

d) What were some of the possible sources of experimental error?

e} Was an indication given as to how well the curve fit the
data?

TTER D RAM
2.1 _Scatter Diagrams and Free-hand Curves

The first step toward estimating the "true" function
is to get an idea of what its graph looks like. We do this
by plotting the data in a two-dimensiconal coordinate sys-
tem, with x-coordinates on the horizontal axis and y-coor-
dinates on the vertical., The resulting picture is called a
scatter djagram. {For ease of interpretation, the diagram
should be carefully labeled.)

Figures 1 and 2 show the scatter diagrams for the data
in Examples 1 and 3.

Organic Acid Content, ¥

90 * oe®
-
80 b °
.
70 Ly
]
P L ]
60 | -
L N
50 - L
Lal % ] i 1 1 ] i i L 1 " 1 1 I

0 20 40 60 80 100 120 140 160
Acid Numper, x

Figure 1., Plot of Acid Number vs. Organic Acid Content

These diagrams give you at a glance a much better idea of
the relation between x and y than you get from leoking at
Tables 1 and 3. In both examples, y increases with x. In
Fig. 1, the points appear to lie on a straight line, while
in Fig, 2, the points show downward curvature--the slope
decreases with increasing x. You could sketch a curve
through the data poirts. This would be vour free-hand



estimate of the regression curve. (In some applications,
this may be all you need.)
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Figure 2. Response of Sea Anemones to Standard Stimulus

In addition to indicating the general shape of the
curve, the scatter diagram shows something about the
amounts of variation or scatter in y. In Fig. 1, all the
points are cleose to a line: the scatter is small. In Fig.
2, some points are rather far from the free-hand curve
(wherever you draw it), so the scatter is larger. If the
scatter is too great, it is impossible to draw a good free-
hand curve. (See Exercise 2.4.)

In Section 3, we shall see how to measure the scatter
of the data points about a curve drawn through them. For
now, let's consider the vertical scatter, that is, the
variation in the y values alone, ignoring any dependence on
X. This will be useful later on in Section 5 when we try
to decide if the curve fits the data well. (If the scatter
about the curve is as great as the scatter in the y values
alone, then we have gained nothing by fitting the curve.)

Consider the five-point example in Fig. 3. The points
seem to lie along the line y = x, which is one person's
free-hand estimate of the regression line. If we ignore
the x values and just plot the y's, we get the one-dimen~
sional vertical scatter diagram in Fig. d4{a). Figures 4(b)
and 4(c) show what one might get in other examples.

Scatter refers to the dispersion of the points about
some central position., For this, we use the meap value of
v, denoted y. If the y values are Yir Yor e 0 Yyr then,
by definition, the mean is




Figure 3. A 5 Point Example

5.5
5.0 :L 0
.5
+ 4.0
3.5
3.0 3.0
-+ 2.0 $
1.5 1.5
1.0 + 1.0
0.5 &

(a) (b) {c)

Figure 4. Vertical Scatter Diagrams

N
(2.1) Y= ;5 y,/n
in a way, ¥ is the "center of mass" of the y values. 1In
Fig. 4(a),
Yy=1(1+1.5+3 + 4.5 +5)/5 =15/5 = 3.

In Figs. 4(b) and 4{c), ¥ = 3 also.
The difference between a particular y value ¥ and the
mean ¥ is called its deviation from the mean. We might try

10



to measure the scatter by the sum of the deviations. If we
did this for the data in Fig. 4(a) we would get

N
igl (yi~§) = (1-3) + {1.5-3) + (3-3) + (4.5-3) + (5-3)

= -2 +-1.5 +0 +1.% +2 =0,

In fact, the sum of the deviations from the mean is always
zero, because

ifp ¥ = by vy 75 Y 5 By - Ny = 0.

The sum of the deviations is not a good measure of scatter,
Some of the poeints are above the mean, some are below, and
the positive and negative deviations cancel out,

One way to correct this is to use the absolute values
of the deviations. For the data in Fig. 4(a) we get

3L lygo¥l o= =20+ 1-1.51 + tol + 11.50 + 2] = 7.
For the data in 4{(b) and 4(c), the sums are 7 and 8. The
sum in 4(c) is larger simply because there are more points.
Actually, the scatter in {c¢) is less than that in (&) or
{b), because the points are clustered more tightly about
the mean. This suggests that we should calculate mean
absolute deviation by dividing the sum by the number of
peints. The mean absolute deviations for (a), (b), and (¢}
are 7/5 =1.4, 7/5 =1.4 and 8/7 = 1.14. This does provide
a reasonable way to measure scatter, and it is sometimes
used. However, it is difficult to work with, both in prac-
tice and in statistical theory, because absolute values do
not combine easily. Notice also that according to this
measure, Figs. 4(a) and 4{(b) bhave the same amount of scat-
ter, Since the points in (b) are more spread out, we might
want to say that (b) really shows more scatter than (a).

2.2 Variance

Ancother way to make the deviations positive is to

square them. This leads to the mean squared devjation, or
variance, denoted by var(y). By definition,

tl b1
=

(y-—?)2

(2.2) var(y) =

11



For example, in Fig. 4(a),

=22+ 110512+ (2 + 0.2 v (2
5

var(y) =
= 1235 = 2.5.
In 4(b) r
a2 2 2 2 2
var(y) = =252 s 12 s (o; + )2 + (2.5)
= RN

By this measure, (b} shows more scatter than (a). In (c),
var{y) = 1.85, so (c¢) shows less scatter than (a} or (b).
The variance is the measure of scatter we shall use,

For more realistic examples, which normally have many
more data points, another formula for the variance is use-
ful:

N2 2
(2.3) var(y) = i£1 yi/8 - ¥°.
We shall derive this in the next section.

The square root of the variance is called the standard
error, It indicates how far a typical measurement is from
the mean. The standard error gives an idea of the reli-
ability of the estimate, or its usefulness in prediction.

Example 4 continued (Galton)

In Table 4, there are 10 values of y for which x =
69.5. Let's compute the mean, variance, and standard error
for these. A hand-held calculator is useful!

2
Yy ¥

67.2 | 4516

67.2 4516 Mean:

68.2 | 4651 T = 698/10 = 69.8

69.2 | 4789

69.2 | 4789

variance:

70.2 | 4928 var(y) = 48757/10 - (69.8)° = 3.6

70.2 | 4928

71.2 | 5069

712.2 5213 Standard error:

73.2 | 5358 ¥3.6 = 1.9 inches
TOTALS: 698.0 | 48757

12



Note: 1In computing the variance and in the other
computations in this unit you do not round off teco soon,
For var(y) to be correct to the nearest tenth when there
are 19 measurements, Zyi must be correct to the nearest
unit. In this example, being correct to the nearest unit
reguires five significant digits.

We have been discussing the vertical scatter. The
horizontal scatter, the scatter in the x values alone, is
measured similarly. The mean and variance in x are

.
(2.4) X =54 xi/N
and
N 2
var{x) = 5 (xi-ij /N
N
- T 2 _ =2
{2.5) is1 xi/N x°.
Exercises

2.1 Sketch a line through the points in Fig., l. (Use a transparent

ruler or thread, or put your eye at table level and sight through

the points.) Find the slope of your line, and write an equation
for it.

2.2 Make a scatter diagram for the data in Example 2. Sketch a line
through the data points. Make sure your line goes through the
origin. (Why?} Find the slope of your lime. 1If m is your
slope, then 50m is your estimate of B by the "eye-ball' method.
Compare this estimate with the one you got in Exercise 1.2.

2.3 Sketch a curve through the data points in Fig. 2. What types of
functions have graphs like this?

2.4 The following data were collected on 35 heifers. x = a certain

body measurement at birth (em); y = same body measurement a2t omne

year (cm).

x 22,2 19,0 21.3 20,5 18.5 19.0 24.8 19,1 25.1
28.5 22.4 27.1 29.0 27.7 29.1 31.5 23.6 38.3

24.7 22.1 20.8 19.3 22.3 25.7 23,2 21.5 25.2
y 39.3 34.3 35.0 28.3 34.2 37.2 31.6 33.0 36.3

25.0 19.7 25.0 20.3 19.3 24.0 24.0 22.9 18.2
37.6 31.7 36.6 30.1 29.4 39.9 38.5 30.0 23.7

21,2 24.7 18.9 23.2 19,9 23.1 18.9 19.5
28.4 39,8 28.6 34.9 34.1 33,2 28.7 32.5

13



Make a scatter diagram from these data. Notice that the scatter
is considerable, making it impossible to decide where to sketch a

curve.

2.5 In a course on computer programming, a large group of business
administration students were giver Instructional material and
allowed to proceed at their own pace. At the end of the course,
ten students were selected at random to take an achievement test.
The following data were collected:

x = hours spent in

completing the course 30 25 50 38 20 70 33 24 60 45

y = achievement test 80 80 45 70 95 20 50 90 25 50
score

Make a scatter diagram. Sketch a line through the data points.
Estimate the test score of a student who required 40 hours to
complete the course.

2.6 Compute the mean and variance in y for the data in Table 1.
2.7 Compute the mean and variance for y in Exercise 2.4,

2.8 1In Fig. 3, if we ignore the y's and just plot the x's, we get
this one-dimensonal horizontal scatter diagram:

1 2 3 4 5
Compute the mean and variance for this.

2.9 Compute the mean and variance for y and for x in Exercise 2.5.

E - E THOD
Th u s of th viation

The free-hand method of curve fitting may be adequate
in some situations, but it is subjective in that different
people will get different reswlts, And when the scatter is
considerable, no one can decide, just by "eye-balling" it,
vhere to draw the curve. We need an analytic method that
is reproducible and workable even when there is consider-
able scatter.

So, suppose we have N data points, (xi, yi) for i =1,
2y ..., N, and suppose we have decided on the kind of func-
tion vy = f(x) we want to use. (How to decide this will be
discussed more in Unit 434.) That is, suppose we know f(x)
except for some undetermined coefficients a, b, ¢, m, etc.
For instance, if the curve is a line, then f(x) has the
form mx + b. For a parabola, f(x) = ax”™ + bx + ¢. Or, we
might wish to fit a curve of the form y = m log x + b or y
= axm, and so on. The problem now is to find the values of
the coefficients that make the function fit the data best.

14



Obviously, we need some measure of "goodness of fit,"
Since we are trying to predict y from x, the function will
fit well if the distances between the function values,
f(xi), and the observed values of y, the yjr are small,
taken as a whole. The difference ¥y - f(xi) is called a
deviation, (See Fig. 5.) The most frequently used crite-
rion for fitting the function is the "least-sguares” cri-
terion, which says: "Choose the coefficients to minimize
the sum of the squares of the deviations." In symbols, we
want the values of a, b, ¢, etc. that minimize

B 2
(3.1} § = ;I ly; - £(x)17%.

Figure 5, Deviations

As in the previous section, we take the mean squared
deviation, S/N, as a measure of the amount of scatter of
the data points about the fitted curve. In the five-point
example of Fig, 3, the fitted line was y = x. The sum of
squares for this line is

N

L (yi - X,

2
i=1 1)

w
1)

(1-112 + (2-1.5)2 4+ (3-3)2 + (4-4.5)°% 4 (5-5)2

n

= 0.5.

Thus, the scatter about the line is S/K = 0.5/5 = 0.1.
(This is not the least-squares line, See Exercise 3,3,)
The least-squares (LS) fit is preferred for several
reasons, It produces a functicn that generally corresponds
to our free-hand curve in simple cases. It is relatively

15



easy to compute. Also, if the data satisfies certain as-
sumptions, the LS fit can be shown to have some nice sta-
tistical properties. For instance, suppose the true func-
tion is the line y = mx + b and the fitted equation, com-
puted by the LS method, is y = mx + b. The numbers m and b
(read "m hat" and "b hat") will not necessarily equal m and
b. But if we were to repeat the experiment many, many
times, each time computing fi and B, then the averages of
the values of f and b would approach the true values m and
b, (Check one of the statistics books in the bibliography
if you want to pursue this further.}

1,2 Fitting A Constant Function

The simplest function to fit is the constant function,
f{x) = b. 1If the true function is constant, then y does
not depend on x at all. The problem then is to estimate
the one true value of y based on measured values Yir Yo
«++r Yy- The deviations are Y; - b. The least-squares
criterion says: Choose b so as to minimize the sum

N 2
= L -

(3.2) s is (yi b)“.

For example, in Fig. 4(a) we have y; = 1, ¥, = 1.5,
¥q = 3, Yg = 4.5, Yg = 5. Thus,

$=5b) = (1-6)2 + (2.5-5)% + (3-b)2 + (4.5-b)2 + (5-b)2.

This expression gives S as a quadratic function of b. (See
Exercise 3.1,) When we expand the squares and ccllect
terms, we find that

S = (1-2b+b%) + (2.25-3b+b2) + (9-6b+b2)
+ (20.25-9b+b%) + (25-10b+b?)
(142.25+9+420.25+25) - (24346+9+10)b + 5b2

57.5 - 30b + 5b2.

H

To find the value of b that minimizes this, we use the
following fact from algebra, which will be used again in
the next section. (See the Appendix for a proof.)

LEMMA. A quadratic function of the form
2

(3.3) Y = AX® + BX + C
with positive squared term (A > 0) attains its
minimum value when X = -B/(22). The minimum value
of the function is Y = C - B%/{4A}.

2

When we compare S = 57.5 - 30b + 5b° with Eq. (3.3),
we find that 8§ corresponds to Y, b corresponds to X, A = 5,
B = -3¢, and € = 57.5. Therefore, the value of b that

16



minimizes S is

~ _ =B _ _ {= -
b =3 =" "3(5 T3
The minimum value of S is
. 52 (-30) 2
Ss=C-~- ry 57.5 - a(5) = 57.5 - 45 =12.5.

Note that b is just the mean value ¥ of y that we computed
in Section 2.
This example illustrates what happens in general. To

minimize § in (3.2), expand the squares and collect terns:

: 2
5= ;L (y;-b)

N
- I 2_ 2
i5) (¥j-2y;b+b™)

H N

_ I y2 - 21 y.b+ L b2
i=) ¥i is1 ¥i is1 ° -
Now Zy. = K¥ and Ib? = sz, so that
i ¥
N
= 2 _ 2
S = 151 Yy 2NY b + Nb“.

Comparing this with Eg. (3.3), the standard form in the
lemma, we find that

Therefore, the value of § is minimized for

b = =B - _ {=2N¥) _
b =3 = N - ¥

and the minimum value of S is

2 2=2
& - _B- 2 _ 4AN"y" _ 2 _ =2
$=0C-4p =¥ an - Iyi - wYT.

Now we have two expressions for §, the one in the pre-
Yious sentence and § = E(yi—Y)z, obtained by substituting
b = ¥ into Eq. (3.2). Setting these equal and dividing by
N, we get

2 2
N .= N s
. N T o=l N izt N~ Y-
By definition (2.2), the expression in the middle is
var(y). This shows that formula (2.3) for the variance is
correct.

17



In summary:

The least-squares fit of a constant function
f{x) = b to data points Yir Yor covr ¥y
is obtained by minimizing

N

= L N
§=;4 y; -7,
The estimated value of b is
b =7,
and the minimum value of S is
H
§ = L ¢yl - Ng? =
s 191 Y3 Ny N var(y).
Exerciges
3.} Complete the table below by computing

3.2

3.3

s = (1-0)2 + (1.5-0)% + (3-b)% + (4.5-0)% ¢ (5-b)2

for the values of b given., Make a plot of 5 vs. b, and sketch a
parabola through the points. Notice that the low point on the

parabola is at b = 3.
b | 1] 2| 3 |4 | s
T s T ]

In an introductory surveying class, 20 students imn 10

teams

measured the length of a property line with a steel tape. The

results are shown below. Estimate the true length by
method by fitting a constant functiom £{x) = b to the

the LS
data,

Compute the scatter about the estimated value (i.e. the vari-

ance) .

Team i 1 2 3 4 5

Measured Length, 147.,9 145.9 145.5 143,22 149.9
¥ {(feet)}

i [ 7 8 9 10
¥ 150.7 148.3 152.9 151.5 144.8

Copy the five-point scatter diagram im Fig. 3 and plot the line

y = 1.,lx - 0.3 on it. Compute the sum of the squares
deviations from this linre. Note that it is less than
of 5§ for the line y = Xx.
a) Using the data in Example 2, compute
30
- I - ?
§ =% 9y -mxp)

for the value of m you got in Exercise 1.2.

of the
the value

18



b) HNow compute § for the value of m you got in Exercise 2.2.
Which value of m gives the better fit?

3.5 Derive (2.3} directly by showing that

N N
I R TSR e
iz 9y - = h Ny
int: — 2
Eint (yi_y) - y?

i Ty try.

The middle term on the right side of this last expression sums to
-2Ny .

4, FITTING A LINE
4.1 Introduction

Let's assume now that the regression curve is a
straight line, so that the true value of y for each x is
given by y = mx + b for some unknown values of m and b. We
want to estimate m and b by the LS method, that is, by
choosing m and b so as to minimize

N 2
(4.1) S = s(m,b) = ;& (y; - mx; - b}".

First we shall consider the special case of lines
through the origin. That is, we'll assume b = 0 and try to
minimize 8 letting m vary. The result will be useful in
its own right and will also generalize to the case of lines
through any given point. Then we shall consider lines of
the same slope; we'll hold m constant and try to minimize §
by letting b vary. Finally, we'll consider all possible
lines, letting both m and b vary.

Fitti ine Thro the Qrigin

Suppose we know that the regression line goes through
the origin, sc that b = 0 and y = mx. We are looking for
the value of m that minimizes

N 2
= _k -
{4.2) s iy (yi mxi) .

For example, let's lock for the line y = mx that best
fits the 5 points in Figure 3. Some possible lines and the
corresponding values of S are shown in Figure 6. The line
y = x gives the smallest S among those shown. Does it have
the smallest $§ among all lines through the origin? Let's
see, From (4.2},
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S=8(m = (1-m2 + (1.5-2m}% + (3-3m) 2

+ (4.5-4m)2 + (5-5m) 2.

J i A n 4

0 1 2 3 4 5 X

Figure 6. Lines through the origin.

Expanding the squares and collecting terms, we get
S = (1-2m+m?) + (2.25-6m+4m%) + (9-18m+9m?)
+ (20.25-36m+l6m2) + (25-50m+25m2)

$7.5 - 112m + 55m2.

This is a quadratic functicn of m, so the Lemma applies
with A = 55, B = -112, and C = 57.5. The value of S is
minimized when m equals

~ _ B _ _ (=12) _
LT Z(s5) = 1-02-
The minimum value of 5 is
2 2
a _ BZ _ _ 4=
s§=2¢C 4R 57.5 1(55) .48.

Thus, the LS line through the corigin is

y = 1.02x.

{(Perhaps it is surprising that y = x was not the LS
line through the origin. 1In general, the points farthest
from the origin have the greatest effect on the value of fi.
Thus the LS line runs between the points (4,4.5) and (5,5)
in Fig. 3.)

In general, we can proceed in the same way to minimize
{4.2). Expand the squares and collect terms:
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N N
) - 2 _ 1 2 2 2
iz (¥ mx; ) igy vy 2%y m + x{m)
N N N
= 2 _ p s .22
=5 ¥i -2 3L xyimo+ 15 ximt.
Now apply the Lemma, with
A= Fx?, B = -25x and C = £o?
if i¥ir ¥5-

The value of S is minimized when m equals
M

. B . _ -2 E X.¥.
m= 5. = —i=l %)

2A N
T L2
24 %
N
'E] X.Y.
=I£J2.
i=1 ¥
The minimum value of S is
n 2
6-c. B _ ¥ o 2,5 xiv)
3A i=1 ¥ N
4 i=1 xl
N
N (L ox.y?
= L 2 _ =l Titi
i1 ¥i K, :
L x“
i=] 7i

The formula for m can be written as
- 2
Exiyi =m in.

Substituting this into the formula for 8, we get

]
=
Mz
»
R

N
2
i5 ¥i

(7253
1l
e
M}
Jd
Lol V]

vew

N
2 .2
ify ¥y - @7 I

| 0
=)

L]
)

'

In Summary:

The least squares fit of a line through the origin,
Y = mx, to data points (xl,yl), (xz,yz), ceer (xN,yN)
has slope m equal to
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. Y.
(4.3) fi = lﬁl——l—l

PN 2

i=1 *i

The minimum value of S is

N

3]
=Z 2-'\22 2_
(4.4) § =34 ¥j - B L X
X conti d {Heat of fusion)}

Since adding no ice should result in no temperature
change, the true line goes through the origin. We compute
the LS line, y = fix.

¥i Yi x% Xi¥§ Yf
13.4 19 179.56 254.6 361
12.8 19 163.84 243.2 361
15.1 22 228.01 132.2 484
19.7 30 388.09 591.0 300
17.5 27 306.25 472.5 729
19.3 29 372.49 559.7 841
12.5 ig 156.25 225.0 324
11.5 18 132.25 207.0 324
14.2 2 201 .64 298.2 441
11.2 17 125.44 190.4 289
10.5 16 110.25 168.0 256
11.8 17 139.24 200.6 289
10.2 16 104.04 163.2 256
13.6 20 184.96 272.0 400
18.1 29 327.61 524.9 841
17.8 27 316.84 480.6 729
18.1 28 327.61 506.8 784
14.2 23 201 .64 326.6 529
15.9 25 252.81 397.5 625
18.3 27 334.89 494.1 729
19.3 . 29 172.49 559,7 841
13.9 21 193.21 291 .9 441
15.6 24 243.36 374.4 576
10.7 16 114.49 171.2 256
18.5 28 342.25 518.0 784
17.2 25 295.84 430.0 625
15.0 22 225.00 330.0 484
14.2 20 201 .64 2B4.0 400
19.0 28 361 .00 532.0 784
17.2 26 295,84 447.2 676

TOTALS 456.3 687 7198.83 10846.5 16359

fi= 108462 _ ) 5067 § = 16359 - (1.5067) 2(7198.83) = 16.6
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The LS line through the origin is y = 1.51x. The class
estimated the value of B as 55fi = 83 cal./g. (The accepted
value is closer to 79.7 cal./qg.)}

In Example 2, we knew that the regression line passed
through the point (0,0}, so we made our estimate pass
through that point also. More generally, suppose we want
our estimate to pass through the point (xoryo). The equa-
tion for a line through (xo,yo) is y = ¥y + m(x-xo), so the
expression to be minimized (3.1) is

N
(4.5) 5= ;I ly; -y, - mlr;-xg)1%.

We could proceed as we did for (4.2) by expaﬁding the
squares and collecting terms, but there is an easier way!
Let's make the substitutions yi =¥; ~ ¥, and xi = X; -
X.. (x! and yi will be numbers calculated from the

data.,) Then we can write (4.,5) as

N (2
= E -_—
5= 35 vy - omxg)
This has the same form as (4.2), using the points
(xi,yi) instead of (xi,yi). 2l1l we have done is to
take (x_.,y,) as our origin and compute the coordinates of
the data points relative to that. Using the results (4.3}
and (4.,4), we find § is minimized when m equals

o] N
I xly! L (x.=x ¥ {y.-y,)
A = . =
(4.6) R i lﬁl———l——ﬂ-;—l-—ﬂ—,
2
& %) ik xi7xg)

The corresponding value of S is

N R

(4.7) 8 (vh - 8% 5 (xp?

i=1

N N
-1 vt - R R g
For example, consider lines through the peint (3,3) in
Fig. 3. Some of these are shown with the corresponding
values of § in Fig. 7. The line y = x has the smallest §
among the ones shown, but we suspect that S would be smal-
ler for a line with slope slightly greater than 1. (This
would decrease the deviations of the peoints (2,1.5) and
(4,4.5) from the line.} To verify this and find m, we
compute the coordinates relative to (3,3}):
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m 5
0.514.0
1.01 0.5
1.5 2.0
0 1 2 3 4 5 X
Figure 7. Lines through (3,3).
r L} ] 2 L] r 1 2
xi yl xi yl (xl) xj_Yi (Yl)
1 1.0 ~2.0 ~-2.0 4 4.0 4.0
2 1.5 -1.0 -1.5 1 1.5 2.25
3 3.0 0 0 0 0 1]
4 4.5 1.0 1.5 1 1.5 2.25
5 5.0 2.0 2.0 4 4.0 4.0
TOTALS 0 0 10 11 12.5
Thus,
@t =11/10 = 1.1
and

Uz
i}

12.5 - {1.1)%(10) = 0.4.

We conclude that the LS line through the point (3,3) is

¥y =3 +1.1(x-3)

1.1 x - 0.3.

il

Fitt: ine with Given 81

Now suppose we want our line to have a given slope m.
We hold m fixed and vary b, trying to minimize the value of
S in Eq. (4.1). Lines with the same slope are parallel, so
we are looking for the line in a complete set of parallel
lines that gives the smallest S value,
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Figure 8. Lines of slope 2.

For example, consider lines with slope 2 in the five-
point example of Fig, 3. Some of these and the correspond-
ing values of S are shown in Fig. 8. The middle line, y =
2x - 3, has the smallest S among the lines shown., Does it
have the smallest value of S among all lines of slope 22
Let's see. From Eq. (4.1},

5

5 = igl (yi - 2x; - b)

2

(1-2-b}2 + (1.5-4-b)% + (3-6-b)?
+ (4.5-8-b}2 + {5-10-b)?
(-1-b)2 + (=2.5-b)2 + (-3-b)2 + (-3.5-b)2

+ (-3-b)2 + (-5-b)2.

This equation expresses 5 as a guadratic function of b. We
could expand the squares, collect terms, and apply the
Lemma, but again there is an easier way. The last expres-
sion for S above has the same form as {(3.2) with the data
values -1, -2.%, -3, -3.5, and -5. We have already seen
that the minimum value of S for that expression occurs when
b eguals the mean data value. Therefore,

~ (-1 - 2,5 -3 -3,5 -5} =13

b = 5 = S = -3,

We conclude that the LS line with slope 2 is y = 2x - 3.
Notice that the line y = 2x — 3 passes through the
point (¥%,¥) = (3,3). In any scatter diagram, the point
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{x,v) is the center of mass of the data points. Does the
LS line of given slope m always pass through the center of
mass (X,y) ? Once more we examine (4,1). This time,
following the short cut used in the previous paragraph, we
view the problem as one to fit the constant b to the data
points y. - mx.. {Remember m is a fixed number for now.)
The value of b that gives the minimum S is the mean:

N i . . . .
o b W am Ve am Mg g

This shows that ¥ = mXx + . In other words, the point
{(x,¥) is indeed on the line.
ittin ner

We are finally in a position to find the general LS
line. We allow m and b both to vary in Eq. (4.1}, and we
ask for the values f and b that minimize S. For any par-
ticular m, the value of S8 will be least when b =y - mXx,
i.e. when the line goes through the center of mass (X,y).

But among all lines through (X,y), the value of m which
minimizes § is given by {(4.6). We conclude:

The general least-squares line is y = fix + b, where

N
L (xR (v -
(4.8) fi = Lr',l i i
2
and if (%70
(4.9) 6 =7 - mx.

The line goes through the center of mass (X,¥).

Formula (4.8) is not very convenient for computations, |
since it involves computing coordinates relative to the
center of mass. Rounding off X and ¥ leads to errors in X5
- X and y. - y that accumulate in the sums. Therefore,
another formula is desirable. By (2.5), the denominator in
(4.8) can be written as
2 -2

xi—Nx.

The numerator can alsc be simplified:

N N N
- v} = .L -vy - L X -y
R T N e N e LIPS RO
The last term on the right is zero, because f(yi—§) = 0.
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Since Exi = NX,

T S R I
a4y *lyy¥y) = oo %Yy T oga XY T gn XYy o WRY-

So the formula for fi preferred for computation is

N
. .Y, — NX§
A 1=1 ¥y
{4.10) m = g R ‘2 .
i=1 xi - Nx

4.5 The Uptake of Nitrogen by Grasses

In a greenhhouse experiment on the growth of a grass
mixture, Known amounts of nitrogen were added to the com-
poest in which the grass was grown, and the ameount of nitro-
gen in the mature grass was measured. The results for 11
pots are shown in Table 5.

TABLE 5
UPTAKE OF NITROGEN BY GRASSES

Nitrogen in compost,

X (grams per pot) O 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Nitrogen in grass,

y {(grams per pet) 0.12 0.23 0.32 0.25 0.26 0.52 0.53 0.63

x_ 0.8 6.9 1.0
y 0.63 0.69 0.73

The scatter diagram (Fig. 9) shows the relation of y
to x to be approximately linear.

Nitrogen in grass, y (grams/pot)

1] .1 .2 .3 .4 .5 6 7 .8 .9 1.0
Nitrogen in compost, x (grams/pot)

Figure 9. Uptake of nitrogen.
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Let's compute the sums and the coefficients for the LS

line.
Data Point X x2 Y. y? X.¥.
1 1 1 b3 1-1
1 0.0 0.00 0.12 0.0144 0.000
2 .1 .01 .23 .0529. .023
3 .2 .04 .32 L1024 .064
4 .3 .09 .25 L0625 .075
5 .4 .16 . 26 .0676 .104
6 .5 .25 .52 .2704 .260
7 .6 .36 .53 L2809 .318
8 7 .49 .63 .3969 L431
9 .8 .64 .63 .3969 .504
10 .9 .81 .69 L4761 .621
11 1.0 1.00 .73 .5329 .730
Totals 5.5 3.85 4.91 2.65 3.130
= _ 2.2 _ - - 4.91
X =332 =0.5 Y = %5 = 0.4464
Using (4.10),
a - _ 0,675 _
® =385 < (11)(0.5) (0.5) =1.10 =~ 0-614.
From (4,9},
b = 0.4464 - 0.614(0.5) = ,139.

The LS line is

y = 0.61x + 0.14.

This is the line drawn in Fia. 9.

Exercises

An experiment was done in which temperatures were taken at vari-
The following table,
derived from the data, uses a point 324 feet below the earth's

surface as an origin for both temperature and depth.

ous depths in a gold mine in South Africa.

The number
of feet below the origin is x, and y is the number of degrees
Fahrenheit above the temperature at the origin (which was

o
70.0°F),

¥ 300 600 1750
y 1.0 4.0 8.0

2500
14.5

3400
18.0

3700
25.0

Make a scatter diagram for these data.
through the origin using {4.3), and plot the line. (Data from
Science 33:828-831

Compute the LS line

Watson, T.L., 'Underground Temperatures,’
(13911).,)
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" 4,2 Compute the LS line for the data in Example 1, using formulas
{(6.10) and (4.9). Compare your result with the computer result
stated in Example 1.

4,3 Compute the LS line for Example 4 (Galton). Note that the slope
is less than 1.

4.4 a) Compute the LS line for Exercise 2.5 (self-paced learning).
Plot the line in the scatter diagram.
bB) Now treat y as the independent variable, x as the dependent
wariable, and compute the LS line of the form x = m'y + b'.
Plot this line also. Notice that it is not the line obtained
in (a).

4.5 Show that the line y = mx + b goes through the center of mass if
and only if the sum of the deviations from the line is zero.
That is, show that

N
¥F=nX + b if and only if igl (yi - mx, - b) = 0.

This is another reason why we should expect the LS line to pass
through the center of mass.

5. HOW TO TELL IF YOOUR LINE FITS WELL
5.1 Introduction

It is usuvually desirabkle to get some ideas as to how
well your line fits the data, After all, you usually will
net know for sure that the true curve is a line. If the
least-squares line doesn't fit well, you might try to fit a
parabola or some other curve instead. Also, vou will prob-
ably like te know how close your estimated values of y are
to the true values, for each x, especially if the line is
to be used for prediction.

You can tell something about how well your eguation
fits just by leooking at the curve on the scatter diagram.
Do the data points tend to lie mostly above (or below) the
fitted line at the ends, but below (respectively, above) it
in the middle? Then the rearession curve is probably not a
straight line. (See Fig. 10.) Do the data points show
more scatter toward one end of the fitted line than toward
the other? Then the estimated values of v will be unreli-
able at that end. (See Fig. 11.) Does one data point seem
to stand out, lying much farther from the line than the
others? Check it out! If it is an error, refigure the LS
line without it, If not, it might be worth fame and for-
tune to discover its causel
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Figure 10. Regression curve not a straight line.

variance increases with x variance decreases with x

Figure 11. Variance in y depends on x.

Various tests of goodness of fit are given in statis-
tics books, and confidence regqions can be given around the
LS line such that the true value of y lies within the re-
gion, say, 90% of the time. These subjects are beyond the
scope of this unit. Let's just say that the line fits well
if it accounts for most of the scatter in y, that is, if
the scatter of the data points about the line is small com—
pared to the variance in y.

catter About th ine
The scatter about the LS lipe is the mean squared
deviation:
§ 2
(5.1) g - i1 (yi - WX; - b)
N N *

The square root of 5/N is called the standard erro f the
stimate. It shows how far a typical observed value of y
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is from the line. To compute § in the case of a line
through the origin, you would use Eq. (4.3). 1In the case
of a general line, you have to make the change of variables

= -5 | T T | :
xi = % X and ¥i Y; Y in (4.3). The result is

N N
& _ I _sv2 _ a2 7 =y 2
s = (yi ¥) nt oo (xi Xx)“.
Dividing by N ané recalling the definition of variance
(2.2), we get

(5.2) % = var(y) - #% var(x).

] lati ffici 4

The scatter "accounted for" or "explained by" the line
is the difference between the total scatter, var(y), and
the scatter about the line, §/N. From (5.2}, we see this
is just " var(x)., The fraction of the total scatter that
is accounted for by the line is_called the correlation co-
efficient gquared, denoted by 2.

(5.3) 2 - Scatter agcounted for by line _ ﬁz var{x}

total scatter B var(y)

As a rule of thumb, r2 should be at least 80% for an ac-
ceptable fit.

Substituting the expression for i from (4.10) into
{5.3) and using (2.3) and (2.5) for the variances, we get a
formula for r“ that is useful for computations:

¥ 2
(.2 Xx.y. =NX¥)
(5.4) r2 - < i=] 1N1
<202 2_ =2
GI X% GG vy

Figure 12 shows scatter diagrams with values of r2
ranging from 0 to 95%. The value of r2 will be 100% only
if all the data points lie on a straight line.

2.4 Example 5 Continued (Uptake of Nitrogen)
Continuing where we left off in Section 4.5, we find
ng 2 2
var(x) = —= - ¥% = d.85 -(0.5)° =10.1,
N 11
and
Ly _
var(y) L _ 92 - 285 _ 5 44642 = 0.0416.

.|
|
[
H
ot
o
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Figure 12. Correlation coefficient squared.

The scatter about the LS line is

*3= var{y) - fi% var{x) = 0.0416 - (0.614)2(0.1) = .0039.

The standard error of the estimate is /.0039 = 0.06. Most
of the observed values ¥ lie within 0.06 units of the
fitted values mx, + b. By (5.3), the correlation coeffi-
cient squared is

2 _ flvar(x) _ 2 0.9
var (y) (0.0416) T

or, by (5.4},
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2 [3.13 - (11)(0.5)(0.4464)1°
13.85-(11) (0.5)%) [2.65-(11) (0.4464) 2]

o —0.425  _
(1.1) (0.458) - 0-90.

This means that about 90% of the total variation in y is

accounted for by the line. The least-square line gives a

good fit to the data.

Exercises
5.1 Compute r2 for Example 1 (organic acid content}, and compare your
result with the values claimed there.

5.2 a} Cowpute the L5 lipe for Example 3 (response of sea anemomes).
Plot the line on the scatter diagram. Does it seem to fit
well? Why not?

b} Compute r" for this line. Does the value of r2 reflect the
lack of fir?

5.3 Compute §/F and rz for the experiment in Exercise 2.4 {growth of
heifers). Does the size of r° seem to reflect the magnitude of
the scatter?

5.4 a) Compute t? for Exercise 2.5 (self-paced learning).
b} In Exercise 4.4, you computed two LS lines for the self-paced

learning data: y = fix + b and x = @'y + b'. Verify that o’
= r°. (This is true in general.)
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1. APPENDIX

The following Lemma was stated in Section 3 and used
in Sections 3 and 4.

LEMMA. A gquadratic¢ function of the form Y = sz + BX + C,

with positive squared term (A > ), attains its
minimum value when X = ~B/{2A). The minimum value
of the function is ¥ = C - BZ/(4A).

The proof is by completing the square:
2

Start with: Y = AX® + BX + C
Divide by A:  Y/A = X° + (B/A)X + C/A
Subtract C/A: Y/A - C/A = X° + (B/A)X

2

Add balf the  Y/A - C/A + (B/2A)2 = x% + (B/A)X + (B/2A)2

coefficient of 2 2 2
X, squared; Y/A - C/A + B /4A° = (X + B/2A}
Isolate Y/A:  Y/A = C/A ~ B2/4A2 + (X + B/2A)2

Multiply by A: Y = C - B2/4A + A(X + B/ZA)2

Since A is positive, the last term of the right is never
negative. Its smallest value is zero, which occurs when X
= -B/2A. The corresponding value of Y is C - 82/4A. This
completes the proof.
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NSWER

Section |
1.1 acid no.. acid content, estimated acid content,
X y ¥y = .3216 x + 35.45
62 35 55.4
100 66 67.6
159 88 86 .6

1.2

1.3

1.4

1.5

Sources of error include measurement error in X and day-to-day
variations in the content of the chemical samples affecting x and
y differently (uncontrelled variables).

The estimated value of m is 1.5l. The estimated value of B is
83,

Measurement error in X3 error in y due to uncertainty in knowing
when a response terminates; sampling error; individual differ-
ences among ANEmMONeEs,

67.2, 69.2. Yes, because these averages y's are closer to the
overall population mean than are the x's.

See page 5.

Sectiog 2

2.2

Fall in temperature, ¢

30 *

28} * 9 o

26} [ ]

22 ¢ ”»

20p L]

187 ¢ .

lefe *®

10 11 12 13 14 15 16 17 18 19 20

Weight of ice, grams
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2.3 Log function, power functiom, and others.

2.4
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2.6 ¥ = 68.6, var{y) = 255
2.7 § =32.1, var(y) = 21.7
2.8 X =3, var(x) = 2
2.9 % =39.7, var(x) = 243, ¥ = 60.5, var(y) = 627
SBection 3 5
3.1 b | s 4ok
11 32.5 30p
2 | 17.5
3] 1z2.5 20p
b 17.5 42— minimum at
5 32.5 10} b =3
'l A 1 L L J b

0 1 2 3 4 5

3.2 6 =¥ = 148.1, var(y) = 9.12
0.

3.3 s

4

3.4 (a) 8 =16.6
Section 4

4.1 y = 0.0059 x

0.3216 x + 35.46

4.2 y

4.3 ¥

0.548 x + 30.9

4.4 (a) y = ~1.54x + 121.6

(b} x = -0.508 y + 75.9, or v = -1.67 x + 126.9
Section 5
5.1 2 = 0.995
5.2 (a) y = 0.56 x + 4.6 (b} 2 = 0.82

Although the value of r2 indicates a possibly acceptable fit, the
LS line does not fit well due to the curvature of the data points
about it,

5.3 8/8 = 8.0, % = 0.63

5.4 (a) r? = 0.92
(b) ma' = (-1.54)(-0.598) = 0.92
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10.

9. SAMPLE TEST

State four purposes for fitting equations to data., and describe
an example illustrating each. (Objective 1)

What is experimental error? {(Objective 2)

What is meant by the least-squares fit of a given type of func-
tion y = f(x) to data points (xi.yi), i=1, 2,3, ... » N?
{Objective 6)

is a measure of the scatter of the data points
about the fitted curve, (Objective 7)

Consider the following experiment:

Raw material used in the production of a synthetic fiber is
stored in a place without humidity control. Measurements of the
relative humidity in the storage room and the wmoisture content
by weight of a sample of the material are taken on 10 days
selected at random over a six week peried. The results are
shown in Table A.

TABLE A
Moisture Content of Raw Material

Relative Humidity,
X {percent) 46 30 34 52 38 44 40 45 34 60

Moisture Content,
¥ (percent) 10 7 9 13 8 12 11 11 7 la

The managers want to estimate the meisture content of the fiber
from the humidity of the room.

Make a scatter diagram using this data. (Objective 3)

Sketch a free-hand line or curve through the data poeints.
(Objective 4)

a. Compute the mean and variance in y for Table A.
b. What does variance measure? ({(Objective 5)

Compute the least-squares line through the data points in the
experiment. (Objective 8)

2 . - .
a. Compute t , the correlation coefficient squared, for this
data. 2
b. What does r measure? (Objective 9)

Does the LS line fit the data well? Discuss. (Objective 10)
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10.

E TEST
See page 5.

(pp. 6-7) Experimental error is the difference between the ob-
served value of a variable and its hypothetical "true' value.

The least-squares fit of a given type of functiom y = f{x) to
data points (xi.yi) is the particular function of that type that
minimizes the sum of the squares of the derivations. (See p.
15.)

Least-squares fit < minimize S = E[yi-—f(xi)]2

The mean squared deviation, S/N = E{yi—f(xi)]zlﬂ. (See pp. 15-
30.)

See Figure A.
See Figure A. Your line should lie between the dashed curves.
a. The sums are computed in Table B below.

102/10 = 10.2.

H

The mean y is y = Zyi/N

The variance in y is

2 2
(Ly: - Ny )
—be T 33ab 5 4,

var(y) = o 10 -

b. The variance measures the scatter about the mean or the total
scatter, assuming mo dependence on x. (See pp. 8-11.)

Taking the sums from Table B, we get

Ix.y.-Nxy

@ — o 1823 . oy
2 _ -2 744.1
Ix. - Nx
1
b =¥ - &% - 10.2 - (0.245)(42.3) = 0.169.

The LS line is y = 0,25 x - 0,17. This is shown in Figure A.
(See pp 26-28.)

a, From Table B,

2
2, Uy WD (g 4)?
(zxi—niz)(zyi-niz) (744.1)(53.6)

= 0.834,

or about B3Z.

2 . . . -
b. 1 measures the fractiom of the total variance in y that is
accounted for by the curve. (See pp 31-32.)

The scatter diagram does not show significant curvature, and the
scatter does not seem to depend on x. There are no "outliers'',
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Figure A. Storage of synthetic material.

or points that lie exceptionally far from the line. Alsoc, the
value of r~ is acceptable. We comnclude that the regression curve
is probably a lirpe.

However, there aren't many data points (N = 10 is small),
and the scatter about the LS line is rather large. The standard
error of the estimate is 0.95, or about 10% of §¥. Thus, the LS
line does not give a precise estimate of y. Whether the managers
can use it depends onm how good an estimate they need.

We suspect that one reason for the large scatter about the
LS line is that the moisture content of the material stored
depends on other factors besides the curreat relative humidity.
For example, there may be a time lag between changes in the
humidity and changes in the moisture content of the material.
More careful experimenting would be necessary to determine this,
{(See p. 29.)

TABLE B
Computations
46 10 2116 460 100
10 7.0 900 210 49
34 9.0 1156 306 81
52 13 2704 676 169
38 8.0 1444 304 64
44 12 1936 528 144
40 11 1600 440 121
45 11 2025 495 121
34 7.0 1156 238 49
60 14 3600 840 196
TOTALS 423 102 18637 4497 1094
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Exg - N;Q

2 -2
zyi - Ny

inyi - Kky

18637 - (10)(42.3)2 = 744.1

1094 ~ (10)(10.2)2 = 53.6

= 4497 - (10}(42.3)(10.2} =

182.4.
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