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[1] Several impacts of climate change may depend more
on changes in mean daily minimum (Tmin) or maximum
(Tmax) temperatures than daily averages. To evaluate
uncertainties in these variables, we compared projections
of Tmin and Tmax changes by 2046–2065 for 12 climate
models under an A2 emission scenario. Average modeled
changes in Tmin were similar to those for Tmax, with slightly
greater increases in Tmin consistent with historical trends
exhibiting a reduction in diurnal temperature ranges. In
contrast, the inter-model variability of Tmin and Tmax

projections exhibited substantial differences. For example,
inter-model standard deviations of June–August Tmax

changes were more than 50% greater than for Tmin

throughout much of North America, Europe, and Asia.
Model differences in cloud changes, which exert relatively
greater influence on Tmax during summer and Tmin during
winter, were identified as the main source of uncertainty
disparities. These results highlight the importance of
considering separately projections for Tmax and Tmin when
assessing climate change impacts, even in cases where
average projected changes are similar. In addition, impacts
that are most sensitive to summertime Tmin or wintertime
Tmax may be more predictable than suggested by analyses
using only projections of daily average temperatures.
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1. Introduction

[2] Climate models are often characterized by their cli-
mate sensitivity, defined as the equilibrium change in
globally averaged surface temperature that results from a
doubling of atmospheric carbon dioxide (CO2) levels
[Cubasch et al., 2001]. The range or standard deviation of
climate sensitivity among different models provides a
common measure of uncertainty in the response of the
climate system to atmospheric CO2 increases. For example,
a range of 1.5–4.5�C is commonly cited based on evalua-
tion of 15+ models [Cubasch et al., 2001], with recent
studies suggesting this range should be slightly higher
[Murphy et al., 2004; Stainforth et al., 2005].

[3] In addition to studies of average temperature re-
sponses, recent model inter-comparisons have focused
on changes in extreme temperature events, such as frost
days or heat waves [Hegerl et al., 2004; Tebaldi et al.,
2006]. This focus reflects the importance of both average
daily temperatures and extreme events in determining
climate change impacts [Easterling et al., 2000]. However,
several societal and ecosystem impacts are more directly
related to changes in mean daily minimum (Tmin; i.e.,
nighttime) or maximum (Tmax, i.e., daytime) temperatures
than to average temperatures or extreme events. For exam-
ple, quantities such as growing degree days and accumulated
chill hours, which are widely used in models to predict crop
and pest development, are influenced differently by Tmin

and Tmax [McMaster and Wilhelm, 1997; Wilkens and
Singh, 2001]. In addition, changes in evapotranspiration
and photosynthetic rates are likely to be more affected by
Tmax than Tmin [Dhakhwa and Campbell, 1998].
[4] Much of the uncertainty in climate sensitivity has

been attributed to model differences in cloud behavior
[Soden and Held, 2006; Webb et al., 2006]. Increased cloud
cover, particularly of low clouds, leads to a greater fraction
of reflected solar radiation and therefore cooling of Tmax

[Groisman et al., 2000; Sun et al., 2000]. In comparison,
clouds have a relatively small net effect on Tmin [Dai et al.,
1999].
[5] Given the important role of clouds in climate change

uncertainty and the differential effect of clouds on day and
night temperatures, a reasonable hypothesis is that inter-
model differences in Tmin changes would be smaller than
associated Tmax changes. Here we evaluate this hypothesis
with daily Tmin and Tmax output for simulations from
12 general circulation models (GCMs) archived by the
Program in Climate Model Diagnosis and Intercomparison
(PCMDI; http://www-pcmdi.llnl.gov) and used in the
Fourth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC AR4.).

2. Models and Methods

[6] Daily output of Tmin and Tmax used in this analysis
were available for 12 models (Table 1). For each model, we
computed average monthly and seasonal Tmin, Tmax, and
average temperature (Tavg) for two available time slices: the
1961–1999 period in a simulation of 20th century climate
(20c3m in the IPCC AR4 nomenclature), and the 2046–
2065 period in a simulation of 21st century climate using an
A2 emission scenario (SRES A2 in the IPCC nomencla-
ture). An ensemble average was computed for models that
provided output from multiple realizations (Table 1). Differ-
ences between the two time slices were computed and then
regridded for all models to a common 2� � 2� grid. For
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comparison with Tmin and Tmax, monthly output for total
cloud cover (clt) were processed in a similar manner.
Below we focus on results for the June–August (JJA) and
December–February (DJF) seasons.

3. Results and Discussion

[7] For most locations, average changes in Tmin across all
models were larger than associated changes in Tmax for both
JJA and DJF (Figures 1a and 1d). Exceptions included the
United States and Western Europe in JJA, and Mexico in
DJF. These trends toward a reduction in the diurnal tem-
perature range (DTR = Tmax � Tmin) are consistent with
previous modeling results [Dai et al., 2001; Stone and
Weaver, 2003], as well as observed 20th century trends
[Easterling et al., 1997; Vose et al., 2005]. However, in
most locations, with the exception of Europe where DTR
increased, the average simulated changes in JJA DTR were
small and not consistent across models (Figure 1b). DTR
trends for DJF were consistently negative across models for
high latitudes and parts of Africa and India, but were
insignificant elsewhere (Figure 1e).

[8] The inter-model standard deviations of Tmin changes,
used here to quantify climate change uncertainty for a
prescribed emission scenario, were significantly smaller
than the standard deviation of Tmax in many locations For
example, throughout much of North America and Eurasia,
Tmax changes for JJA were 50% or more variable among
models than changes in Tmin (Figure 1c; Ratios above 1.68
or below 0.60 are significant at p = 0.05 for an F-test with
11 degrees of freedom.) The large variability of projected
Tmax changes relative to Tmin is similar to the observation by
Alfaro et al. [2006] that the inter-annual standard deviation
for JJA Tmax over central and western United States was
30% larger than for Tmin.
[9] Consistent with the hypothesis that projected Tmax

changes are sensitive to cloud cover and downwelling
radiation, the greatest disparity between Tmax and Tmin

uncertainty was mainly observed during the local summer
season (JJA in northern latitudes and DJF in southern
latitudes) when the diurnal amplitude of downwelling solar
radiation is greatest. To further evaluate the mechanism
behind increased Tmax uncertainty, we computed the corre-
lation across models between projected changes in Tmin or

Table 1. Climate Models Whose Output Was Used in This Studya

Model Designation Resolution Originating Group(s) Number of Runsb

Volcanic and Solar
Forcings in 20th
Century Runs?

GFDL-CM2.0 2.0 � 2.5� GFDL, USA 1, 1 Yes
GFDL-CM2.1 2.0 � 2.5� GFDL, USA 1, 1 Yes
GISS-ER 4.0 � 5.0� GISS, USA 1, 1 Yes
MIROC3.2(medres) T42 CCSR/NIES/FRCGC, Japan 3, 3 Yes
MIUB/ECHO-G T30 MIUB/METRI/MD Germ./Korea 3, 3 Yes
MRI-CGCM2.3.2 T42 MRI, Japan 5, 5 Yes
BCCR-BCM2.0 T63 BCCR, Norway 1, 1 No
CCCma-CGCM3.1(T47) T47 CCCma, Canada 5, 3 No
CNRM-CM3 T63 CNRM, France 1, 1 No
CSIRO-Mk3.0 T63 CSIRO, Australia 3, 1 No
ECHAM5/MPI-OM T63 MPI, Germany 2, 1 No
IPSL-CM4 2.5 � 3.75� IPSL, France 2, 1 No

aSee PCMDI web site (http://www-pcmdi.llnl.gov) for more details on individual models.
bThe number of realizations used for the 20th century (before comma) and A2 scenario (after comma) simulations.

Figure 1. (a) Ratio of average projected changes in Tmax for 12 climate models to projected changes in Tmin for June–
August season. (b) Mean projected change in JJA DTR divided by inter-model standard deviation. Values below �2.2 or
above +2.2 are statistically significant (t-test, p = 0.05). (c) Ratio of inter-model standard deviation of Tmax changes to
standard deviation of Tmin changes for June–August season. Values outside the intervals (0.67, 1.49) and (0.60, 1.68) are
significant at p = 0.10 and p = 0.05, respectively (F-test). (d–f) Same as Figures 1a–1c except for December–February
season. All changes correspond to the difference between 2046–2065 averages in a SRES A2 simulation and 1961–1999
averages in a 20th century simulation.

L05715 LOBELL ET AL.: TEMPERATURE INTER-COMPARISON L05715

2 of 5



Tmax and total cloud cover (Figure 2). Modeled changes in
Tmax were strongly and negatively correlated with changes
in clt for most locations in northern latitudes in JJA and
southern latitudes in DJF, reflecting the cooling influence of
increased clouds and reduced surface downwelling solar
radiation on daytime temperature. Correlations between clt
and Tmin were comparatively smaller, illustrating that
uncertainty in cloud cover changes generally have less of
an impact on Tmin than Tmax.
[10] However, in Northern Hemisphere boreal latitudes in

DJF, Tmin and Tmax changes were positively correlated with
cloud changes, and Tmin projections were more variable
across models than Tmax. Downwelling solar fluxes at high
latitudes in DJF are relatively small, as reflected in low
average values of DTR; the absolute sensitivity of these
fluxes to cloud cover is therefore small as well. The
insulating effect of clouds, which tends to warm surface
temperatures by trapping infrared radiation, therefore
becomes more important and gives rise to a positive
relationship between cloud cover and temperature changes.
[11] Inter-model standard deviations of Tmin and Tmax

were also compared with those of Tavg (Figure 3), because
projected changes in Tavg are often more readily available
than Tmin and Tmax [e.g., Cubasch et al., 2001]. Standard
deviations of Tmax averaged �20% higher than standard
deviations for Tavg in summer months (JJA in Northern
Hemisphere and DJF in Southern Hemisphere), while
uncertainty for Tmin was roughly 10% lower than for Tavg.
[12] In DJF, Tmin uncertainty above 40�N was �10%

higher than Tavg uncertainty, while Tmax uncertainty was
slightly lower than Tavg. Interestingly, in some situations
uncertainties for Tmin and Tmax were both larger than for

Tavg (0–20�S in JJA and 20–40�N in DJF). This result
reflects the fact that modeled changes in Tmax and Tmin

exhibited negative correlations in these regions, with the
largest projected increases in Tmax tending to come from the
same models with the smallest projected increases in Tmin.
[13] While cloud cover changes represent a principal

control on downwelling radiation, variability in solar irra-
diance and volcanic aerosols can also affect incident surface
radiation. Of the 12 models considered in this study, six
included representations of forcings from solar variability
and volcanic activity for the 20th century, while the other
six considered only greenhouse gas and sulfate aerosol
forcings (Table 1; other forcings differences also exist
[e.g., Santer et al., 2006].) Analysis of these two separate
subsets revealed a tendency for models with volcano and
solar forcing to exhibit slightly larger average changes in
Tmax and Tmin (not shown), as well as a larger contrasts
between intermodel standard deviations in Tmax and Tmin

(Figure 4). The disparities between the two model groups
were generally not statistically significant (F-test, p > 0.1)
owing to the small sample size (n = 6). However, this result
suggests that part of the difference between model uncer-
tainty in Tmax and Tmin may be related to inclusion of
volcanic or solar forcings and their effects on radiation
fluxes, a topic worthy of further study.
[14] As mentioned in the Introduction, agricultural

impacts are one case where differences between Tmin and
Tmax changes may be important, because many biological
processes are differentially sensitive to daytime and night-

Figure 2. Inter-model correlation of projected changes in
total cloud cover and changes in (a) minimum temperatures
and (b) maximum temperatures for June–August season.
(c and d) Same as Figures 2a and 2b except for December–
February season.

Figure 3. Zonal means of standard deviation for minimum
and maximum temperature changes, expressed as a fraction
of the standard deviation for average temperature changes,
for (a) June–August and (b) December–February.

Figure 4. Same as Figure 1c for models (a) with and
(b) without volcanic forcings and solar variability in the
20th century simulations.
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time conditions. Spatial averages for Tmin, Tmax, and Tavg
changes in major agricultural regions for JJA were
computed to more directly assess uncertainties relevant to
agriculture (Table 2). In contrast to the predominant global
pattern, average changes in DTR were positive for several
regions and significantly negative only in India, where all
12 models projected a DTR decrease with an average
change of �0.5�C.
[15] Consistent with global patterns, uncertainty in Tmax

was larger than for Tmin for most regions. For example, the
inter-model range for Tmax changes was 1.1�C larger than
Tmin in the U.S. Corn Belt and California, despite the fact
that average changes in Tmax and Tmin were similar. Previ-
ous work has demonstrated that Tmax changes are more
important than Tmin for U.S. maize yields, as water stress
and development rates are both more sensitive to Tmax

[Dhakhwa et al., 1997; Dhakhwa and Campbell, 1998;
Schlenker and Roberts, 2006]. Studies of climate change
impacts on U.S. agriculture may therefore underestimate
uncertainties if using only projected changes in average
temperatures. Uncertainties for Tmin and Tmax were more
similar in regions such as Europe and China, and therefore
use of Tavg in these regions may be less problematic.

4. Conclusions

[16] Analysis of simulated responses to increased green-
house gases in 12 global climate models reveals that
projected changes in Tmin are generally more consistent
across models than changes in Tmax. This finding was
attributed, in part, to the fact that Tmin responses are less
strongly influenced by cloud changes (Figure 2), which
represent a major source of climate sensitivity uncertainty.
The 12 models considered in this study provided an
inconsistent view of future changes in DTR for most
regions. Only for northern high latitudes during winter
months did models agree in projecting a negative DTR
trend.
[17] The results of this study indicate that changes in

summertime daytime temperatures and associated impacts
are currently less predictable than corresponding changes at
nighttime. Studies that assess impacts of climate change
using only projections of average temperatures therefore
risk over- or under-estimation of uncertainties when con-
sidering processes that respond differently to day and night
temperatures. Future work to evaluate the performance of
each model in simulating past changes of Tmin, Tmax, and
DTR would be useful for further constraining uncertainty in
future projections, for example by enabling probabilistic

regional forecasts using performance-based model weight-
ings [e.g., Tebaldi et al., 2004].
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