Taylor Polynomials

Taylor series review

If function f(x) has a power series representation centered at a, then that power series must be the Taylor series centered at a,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Taylor polynomials

Definition

The *n*th degree Taylor polynomial of f(x) centered at *a* is the partial sum of the Taylor series that goes up to and includes the *n*th power of (x - a). If the Taylor series for f(x) centered at *a* converges to f(x) for a given value *x*, then the *n*th Taylor polynomial of f(x) centered at *a* provides a polynomial approximation to f(x).

Taylor remainder

If you approximate a quantity, you need some way to analyze how good the approximation is. Consider the error = | approximation – exact |. Here the exact is a given function g(x) and the approximation is the n^{th} degree Taylor polynomial of g(x) centered at a.

Definition

The *n*th Taylor remainder of *g*(*x*) centered at *a* is

$$R_n(x) = g(x) - \sum_{k=0}^n \frac{g^{(k)}(a)}{k!} (x - a)^k$$

In other words the error in using the n^{th} degree Taylor polynomial to approximate the function is error = $|R_n(x)|$

Analyzing error

The Taylor series error estimate: If $|f^{(n+1)}(x)| \le M$ for all values of x of interest, then

$$\left| R_n(x) \right| \leq \frac{M}{(n+1)!} \left| x - \alpha \right|^{n+1}.$$

You can think of this roughly as the error on the interval is smaller than the largest "first neglected

term" on the interval.

Questions

Let $g(x) = \sin(x)$.

- What is the Taylor series centered at zero for g(x)?
- What is a simple estimate for *M* in the remainder for this function? $(|g^{(n+1)}(x)| \le M)$
- What degree Taylor polynomial for g(x) will approximate it with error less than 0.01 for |x| < 1?
- What degree Taylor polynomial for g(x) will approximate it with error less than 0.01 for |x| < 2?
- What degree Taylor polynomial for g(x) will approximate it with error less than 0.01 for |x| < 3?

Questions

Let $h(x) = \ln(x)$.

- What is the Taylor series centered at 1 for h(x)?
- What is the interval of convergence for that Taylor series?
- What is true about any estimate for *M* in the remainder for this function for the values of *x* in the interval of convergence?
- What if we use the 5th degree Taylor polynomial, $T_5(x)$, centered at 1 to approximate h(x) for $|x 1| \le 0.5$? What is a good estimate for *M*?
- Approximate ln(1.5) with $T_5(1.5)$. What is an estimate of the error in this approximation?

Questions

Let $f(x) = e^x$.

- What is the Taylor series centered at zero for e^x ?
- If we plan to use an n^{th} degree Taylor polynomial, $T_n(x)$, to approximate f(x) for $-1 \le x \le 1$, what is an estimate for *M*?
- Find a value of *n* so that $T_n(x)$ approximates f(x) with error less than 0.0001 for all *x* with $|x| \le 1$.