Review for "New Stuff" final

Exam rules

- You can have one page of notes (front and back) and you are allowed to have a calculator.
- You have the full two-hour period to work on it. When you are finished, you can give me your exam and leave.
- You must show full work on all integrals.

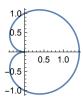
Format

Questions will be similar to daily homework questions and weekly assignment questions.

Topics

- Section 10.1: Parametric equations
 - Be familiar with techniques for changing parametric equations x = x(t), y = (t) into a single Cartesian equation.
 - Find parametric equations for circles.
- Section 10.2: Calculus with parametric equations
 - Slopes and tangent lines.
 - Horizontal and vertical tangents.
 - Length of curves parametrically defined.
- Section 10.3: Polar coordinates
 - Convert between Cartesian coordinates and polar coordinates.
 - Knowing the simpler equations in polar coordinates.
 - Polar curves $r = f(\theta)$.
 - Writing polar curves as parametric equations to find slopes and lengths.
 - Finding periods of polar curves.
- Section 10.4: Areas of polar curves
 - Differences of areas to find area between curves.
 - Finding intersections of curves.

- Section 12.1: 3D coordinates
 - Distance formula.
 - Equations for simple objects (spheres, planes parallel to coordinates axes, etc.).
- Section 12.2: Vectors
 - Significance of vector components.
 - Magnitude.
 - Direction of 2D vectors as an angle with the positive *x*-axis.
 - Scalar multiplication and its geometric significance.
 - Vector addition and its geometric significance.
 - Unit vectors i, j, k. Orthogonal coordinate systems. Frenet Frame.
- Section 12.3: Dot product
 - Find angle between two vectors.
 - Test if two vectors are perpendicular to each other.
 - Dot products relationship to magnitude.
 - Vector projections.
- Section 12.4: Cross product
 - Only defined for two space vectors.
 - $\vec{u} \times \vec{v}$ is perpendicular to both \vec{u} and \vec{v} .
 - $\vec{u} \times \vec{v}$ is a good test of when vectors \vec{u} and \vec{v} are parallel (the cross product is the 0 vector).
 - $|\vec{u} \times \vec{v}|$ is the area of the parallelogram formed from \vec{u} and \vec{v} .
 - $|\vec{u} \times \vec{v}|$ is twice the area of the triangle formed from \vec{u} and \vec{v} .
 - Derivation of Kepler's First Law.


Studying

- Try problems you haven't worked before from the exercises in your reference textbook.
- Look back through the weekly homework assignments.
- Rework problems in Imath.

Sample questions

- **1.** Consider the parametric equations $x = 4\sin(\pi t)$, $y = 4\cos(\pi t) + 1$.
 - **1.1.** Find an equation for its tangent line at t = 1/4.
 - **1.2.** Find all points on the curve that have horizontal tangents.

- **1.3.** Eliminate the parameter to find a Cartesian equation of the curve.
- **2.** Polar coordinates for a point are $(r, \theta) = (4, \pi/3)$.
 - **2.1.** Plot the point in the plane.
 - **2.2.** Find two other different polar coordinates for this same point, one with r < 0 and one with r > 0 but a different value for θ .
 - **2.3.** Give Cartesian coordinates (x, y) for this point.
- **3.** What is the area enclosed by the polar curve $r = \sqrt{\cos(\theta) + 1}$, $0 \le \theta \le 2\pi$, shown below.

- **4.** Find the slope of the tangent line to the polar curve $r = \theta$ when $\theta = \pi/4$.
- **5.** Find a Cartesian equation for the curve given by $r = 2\cos(\theta)$.
- **6.** Find an equation for the sphere with center (2, -3, 6) that just touches the x-y plane.
- 7. Find a unit vector that points in the same direction as the vector that points from point (1, 0, -2) to point (3, 1, 1).
- **8.** Find the values of x such that the angle between the vectors (2, 1, -1) and (1, x, 0) is 45°.
- **9.** Consider the two vectors $\vec{u} = \vec{i} \vec{j} + \vec{k}$ and $\vec{v} = -\vec{2}i + \vec{k}$
 - **9.1.** What is the area of the parallelogram whose sides are formed from \vec{u} and \vec{v} ?
 - **9.2.** Find two different unit vectors that are orthogonal to \vec{u} and \vec{v} .