Section 7.1: Integration By Parts Worksheet

Integration by parts

Let's say you don't like the integral $\int f(x) g'(x) dx$. You can rewrite it as $f(x) g(x) - \int f'(x) g(x) dx$

if you like, and maybe that one will look better to you (one integral for another).

Note that this works for definite integrals, too: we simply add limits:

$$\int_{a}^{b} f(x) g'(x) dx = f(x) g(x) \left| \frac{b}{a} - \int_{a}^{b} f'(x) g(x) dx \right|$$

So you've got choices. The first thing to look for in the integrand is a **product**, of two functions: one you wouldn't mind differentiating (f(x)), and the other you wouldn't mind anti-differentiating (think of it as g'(x)).

Alternate form

If we write u=f(x) and dv=g'(x)dx, then du=f'(x)dx and v=g(x); and if we can identify an integral as $\int u dv$, then we can rewrite it as $uv - \int v du$.

This makes it all look a little like a double substitution. It's actually just a good shorthand. I personally prefer the first form we considered, above -- but you're welcome to use this alternative form (and sometimes I do!).

Questions to submit

- **1.** To evaluate $\int x^n \ln(x) dx$, use integration by parts with $f(x) = \ln(x)$ and $g'(x) = x^n$.
- **2.** Using your results from problem one, what is $\int \ln(x) dx$?
- **3.** Evaluate $\int_{0}^{\pi} x^2 e^{-4x} dx$ using integration by parts.
- **4.** Evaluate $\int x^3 \cos(x^2) dx$ using integration by parts, but first make a substitution.
- 5. What is the area of the region bounded by $y = \sin^{-1}(x)$, the *x*-axis, and x = 1/2? (How did we find the anti-derivative of \tan^{-1} ?)
- 6. What is the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x \sqrt{\ln(x)}$ and the *x*-axis for $1 \le x \le e$. (Use problem one!)

- 7. In problem one above, there is one special case n = -1. Use integration by parts in this particular instance to get $\int x^{-1} \ln(x) dx = \text{stuff} \int x^{-1} \ln(x) dx$. Solve this equation for $\int x^{-1} \ln(x) dx$ to finish evaluating the integral. (Can you think of how this becomes a general rule? What is special about the integrand, $x^{-1} \ln(x)$?)
- 8. To evaluate $\int e^x \cos(x) dx$, use integration by parts twice. (Be sure to choose u and dv the same way both times. If you choose $u = e^x$ the first time, be sure to choose $u = e^x$ the second time. Or, if you choose u = trig the first time, choose u = trig the second time.) Then employ what you did in problem 7 to finish evaluating the integral.