Section 11.1: Sequences

Review

Questions

- Evaluate $\int_{1}^{\infty} \frac{1}{x^{\pi}} dx$ and $\int_{1}^{\infty} \frac{1}{x^{0.1}} dx$.
- For which exponents p does $\int_{1}^{\infty} \frac{1}{x^{\rho}} dx$ converge?

Questions

- Evaluate $\int_0^1 \frac{1}{x^{\pi}} dx$ and $\int_0^1 \frac{1}{x^{0.1}} dx$.
- For which exponents p does $\int_0^1 \frac{1}{x^{\rho}} dx$ converge?

Approximations

Questions

Use the trapezoid rule to approximate $\int_0^1 \cos(\sqrt{x}) dx$

- using *n* = 1
- using n = 2
- using *n* = 3
- using n = 4
- What do we expect to happen as we use larger and larger values of *n* in the trapezoid rule?

Questions

A standard way to approximate the square root of a value is as follows. This method was known to the Babylonians, a few thousand years ago.... To approximate \sqrt{a}

- **1.** Make a rough estimate for the value of \sqrt{a} . Call it the first approximation x_1 .
- **2.** The second approximation is $x_2 = 0.5 (x_1 + \frac{a}{x_1})$.
- **3.** The third approximation is $x_3 = 0.5 (x_2 + \frac{a}{x_3})$.
- **4.** In general, the *n*th approximation is $x_n = 0.5 \left(x_{n-1} + \frac{a}{x_{n-1}} \right)$.

- Use this scheme to find the fourth approximation to $\sqrt{2}$ using $x_1 = 2$.
- Do the approximations improve as *n* gets larger?

This method is an example of "Newton's method" (section 3.8), which is a very general method for finding roots (zeros) of functions.

Sequences

Definition

A sequence is an infinite list of numbers written in a definite order

 $a_1, a_2, a_3, \ldots, a_k, \ldots$

Examples

- **1**, 2, 3, 4, 5, ...
- **1**, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, ...
- -1, 2, -3, 4, -5, 6, -7, 8, ...

Forms

Besides writing a sequence as a list we will also write some sequences

- as formulas: for example $\left\{\frac{n}{2^n}\right\}_{n=1}^{\infty}$
- recursively: for example $f_1 = 1$, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$

Limits

Frequently, but not always, sequences $\{a_n\}$ are lists of approximations that converge to some desired exact values.

 $\lim_{n\to\infty}a_n$

Questions

Do any of the above sequences converge? If so, to what values?

•
$$x_1 = 2, x_n = 0.5 \left(x_{n-1} + \frac{a}{x_{n-1}} \right)$$

1,
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, ...

- -1, 2, -3, 4, -5, 6, -7, 8, ...
- **1**, $-\frac{1}{4}$, $\frac{1}{9}$, $-\frac{1}{16}$, $\frac{1}{25}$, $-\frac{1}{36}$, ...

$$\left\{ \frac{n}{2^n} \right\}_{n=1}^{\infty}$$

• $f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2}$

Techniques

Technique 1

If $a_n = f(n)$ where f is a real-valued function, then $\lim_{n\to\infty} a_n = \lim_{x\to\infty} f(x)$.

Questions

- Find $\lim_{n\to\infty} \frac{n}{n^2+1}$ by evaluation the limit $\lim_{x\to\infty} \frac{x}{x^2+1}$.
- For which of the above sequences can you use this technique?

Technique 2

If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Question

- Does this technique apply to any of the above limits?
- For which values of *r* does the sequence {*rⁿ*} converge?

Monotonic sequences

Questions

- What should we mean by an *increasing* sequence?
- What is an example of an increasing sequence?
- What should we mean by a *decreasing* sequence?
- What is an example of an decreasing sequence?
- What is an example of a sequence that is neither increasing nor decreasing?

Definition

A sequence that is either increasing or decreasing is said to be monotonic.

Bounded sequences

- What should we mean by a sequence that is *bounded above*?
- What is an example of a sequence that is bounded above?
- What should we mean by a sequence that is *bounded below*?

• What is an example of a sequence that is bounded below?

Technique 3

A bounded, monotonic sequence converges.

You might think this way: the sequence has to go somewhere -- it's constantly increasing (say), and yet it can't go past a certain point -- so it has to go somewhere between where it is at any moment and that upper bound. Furthermore, this is true even as long as the sequence is **eventually** monotonic.

You might think this way: no finite chunk of a sequence at the beginning has any impact on convergence. Convergence is a property of the long tail, as the index sails off to infinity.

Questions

Consider the sequence $\left\{\frac{n}{2^n}\right\}_{n=1}^{\infty}$.

- Is this sequence monotonic?
- Is this sequence bounded?