Section 11.2 Series

Review

Questions

Which of the following sequences converge? To what do they converge?

- $\blacksquare \left\{ \frac{2n+5}{3n-1} \right\}_{n=1}^{\infty}$
- $\blacksquare \left\{ \frac{6^n}{11^n} \right\}_{n=0}^{\infty}$
- $\{(-1)^n \frac{3n^2+n-1}{n^2+5}\}_{n=0}^{\infty}$
- $= \left\{ \left(-\frac{5}{8} \right)^n \right\}_{n=2}^{\infty}$
- $\blacksquare \left\{ \left(\frac{4}{3}\right)^n \right\}_{n=1}^{\infty}$

Monotonic sequences

Definition

A sequence that is either increasing or decreasing is said to be monotonic.

Technique 3

A bounded, monotonic sequence converges.

Questions

Consider the sequence $\left\{\frac{n+1}{n}\right\}$. Write out the first few terms of this sequence.

- Is this sequence monotonic?
- Is this sequence bounded?

Questions

Consider the sequence $\left\{\frac{n}{3^n}\right\}$. Write out the first few terms of this sequence.

- Is this sequence monotonic?
- Is this sequence bounded?

Infinite sums

Many quantities can be written as infinite sums or series.

Example

 $\pi = 3.14159265 \dots = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \frac{6}{10^7} + \frac{5}{10^8} + \dots$

Questions

- What is the decimal version of $\frac{1}{3}$?
- Write $\frac{1}{3}$ as an infinite sum.
- Write $\frac{1}{3}$ as an infinite sum using summation notation.
- As you go farther out in the sum what is happening to the individual terms?

Questions

- What is the value of the infinite sum $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$?
- Write this infinite sum using summation notation.
- As you go farther out in the sum what is happening to the individual terms?

Partial sums

The partial sums for the series $a_1 + a_2 + a_3 + a_4 + \dots$ are

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$S_{4} = a_{1} + a_{2} + a_{3} + a_{4}$$

$$\vdots$$

Questions

- What are the first 4 partial sums for the infinite series for $\pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \frac{6}{10^7} + \frac{5}{10^8} + \dots?$
- What do these partial sums represent?

Question

Write the k^{th} partial sum for $a_1 + a_2 + a_3 + a_4 + \dots$ using the summation notation.

Definition

The infinite sum $\sum_{k=1}^{\infty} a_k$ converges if and only if its partial sums converge. If it converges, its value is the limit of the partial sums, $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$.

Question

Consider the series $\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right)$.

- What are the first four partial sums for this series?
- What is the value of the *n*th partial sum?
- Does this series converge? If so, to what value?

Geometric series

Definition

A geometric series has the form $\sum_{k=n_0}^{\infty} a r^k$ for some numbers n_0 , a, and r.

Questions

Which of the following are geometric series?

- $= \sum_{k=0}^{\infty} 2\left(\frac{1}{3}\right)^k$
- $\frac{7}{2} + \frac{7}{4} + \frac{7}{8} + \frac{7}{16} + \frac{7}{32} + \frac{7}{64} + \dots$
- $\sum_{k=1}^{\infty} 2^{-k} 3^k$

Questions

Consider the geometric series $\sum_{k=0}^{\infty} r^k$. Let $S_n = \sum_{k=0}^{n-1} r^k = 1 + r + r^2 + ... + r^{n-1}$ be the n^{th} partial sum for this series.

- What is *r S_n*?
- What is $S_n r S_n$?
- Solve $S_n r S_n =$ (what you got above) for S_n and determine for what values of r the partial sum converges.
- Which of the geometric series converge, and for those that do converge to what value?

$$\Sigma_{k=0}^{\infty} 2\left(\frac{1}{3}\right)^{k}$$

$$\frac{7}{2} + \frac{7}{4} + \frac{7}{8} + \frac{7}{16} + \frac{7}{32} + \frac{7}{64} + \dots$$

• $\sum_{k=1}^{\infty} 2^{-k} 3^k$

Questions

- Consider the geometric sum $\sum_{n=0}^{\infty} 4\left(\frac{5}{6}\right)^n$
 - What are the first few terms of this sum?
 - What is the value of this infinite sum?
- Consider the geometric sum $\sum_{n=2}^{\infty} 3\left(-\frac{3}{5}\right)^n$
 - What are the first few terms of this sum?
 - Rewrite this sum in the form Σ_{n=0}[∞] a rⁿ. What is a? What is r?
 - What is the value of this infinite sum?
- Consider the sum $\sum_{n=0}^{\infty} \frac{2^n + 5^n}{7^n}$.
 - What are the first few terms of this sum?
 - Rewrite this infinite sum as the sum of two geometric series
 - What is the value of this infinite sum?

Question

Write the repeating decimal 0.121212121212... as a geometric series and find its value as a fraction.

Divergence Theorem

Questions

Which of the following sums converge? What is true about what happens to the individual terms of the sums?

- $\sum_{n=1}^{\infty} 2 = 2 + 2 + 2 + 2 + ...$
- $\Sigma_{k=0}^{\infty} \left(\frac{1}{2}\right)^k = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$
- $\sum_{k=1}^{\infty} \frac{k}{k+1} = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots$

Questions

Suppose the series $a_1 + a_2 + a_3 + a_4 + \dots$ converges to *L*.

- What is $S_{n+1} S_n$?
- What is $\lim_{n\to\infty} S_{n+1}$? What is $\lim_{n\to\infty} S_n$? What is $\lim_{n\to\infty} S_{n+1} S_n$?

Theorem

If $\lim_{k\to\infty} a_k \neq 0$, then the infinite sum $\sum_{k=1}^{\infty} a_k$ cannot converge.

Question

How do I know that $\sum_{k=1}^{\infty} \frac{k}{2k+1}$ diverges?