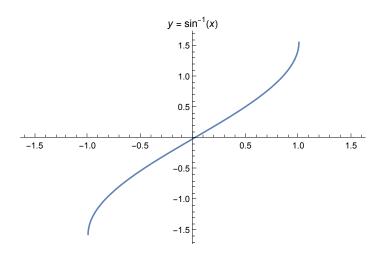

Section 6.6: Inverse Trigonometric Functions

Sine function


Questions

- Solve sin(x) = 0 for x.
- Solve sin(x) = 1 for x.
- Solve sin(x) = 2 for x.
- What is the domain and range of sin(x)?
- Is sin(x) a one-to-one function over its entire domain?

Inverse sine

The function $f(x) = \sin(x)$ for $-\pi/2 \le x \le \pi/2$ is a one-to-one function and has an inverse called the inverse sine or arc sine function

 $f^{-1}(x) = \sin^{-1}(x) = \arcsin(x)$

Questions

- What are the domain and range of sin⁻¹(x)?
- What is sin⁻¹(1)?
- What is sin(sin⁻¹(0.2))?
- For what values of *x* does sin⁻¹(sin(*x*)) = *x*?
- What is $\sin^{-1}(\sin(2\pi))$?
- Sketch the graph $y = \sin^{-1}(x)$.
- Solve $4 \sin^{-1}(3x) = \pi$ for *x*.

Derivative of inverse sine

To find the derivative of $\sin^{-1}(x)$, set $y = \sin^{-1}(x)$. This is equivalent to

sin(y) = x

Find $\frac{dy}{dx}$ using implicit differentiation.

$$\frac{d}{dx}\sin(y) = \frac{d}{dx}x$$
$$\longrightarrow \cos(y) \frac{dy}{dx} = 1$$
$$\longrightarrow \frac{dy}{dx} = \frac{1}{\cos(y)}$$

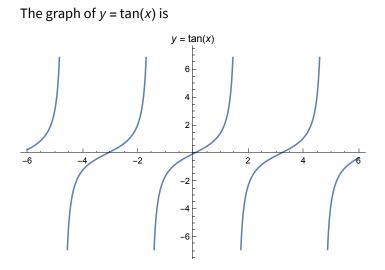
We need the answer in terms of x, not y. Since $y = \sin^{-1}(x)$, we could write the derivative as

$$\frac{dy}{dx} = \frac{1}{\cos(\sin^{-1}(x))}$$

but there is a preferred form. Since $-\pi/2 \le y \le \pi/2$, angle y is in the first or fourth quadrant; $\cos(y) \ge 0$. Using this along with the Pythagorean identity

$$\cos^2(y) + \sin^2(y) = 1$$

to write cos(y) in terms of sin(y).

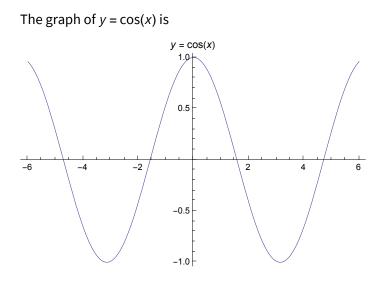

Questions

- Write cos(y) in terms of sin(y) if $-\pi/2 \le y \le \pi/2$.
- Using $x = \sin(y)$, write $\frac{dy}{dx} = \frac{1}{\cos(y)}$ in terms of x.
- Find an equation for the tangent line to $y = x \sin^{-1}(2x)$ at x = 1/2.

Questions

- Let $g(x) = \sin^{-1}(x/2) x$.
 - What is the domain of g(x)?
 - Find the maximum and minimum values of *g*(*x*).
 - What is the range of g(x)?
- Find the area bounded by $y = \frac{1}{\sqrt{1-x^2}}$, the *x*-axis, and $x = \pm 1/2$.
- Evaluate the definite integral $\int_{\ln(1/\sqrt{2})}^{\ln(1/\sqrt{2})} \frac{e^t}{\sqrt{1-e^{2t}}} dt$

Inverse tangent

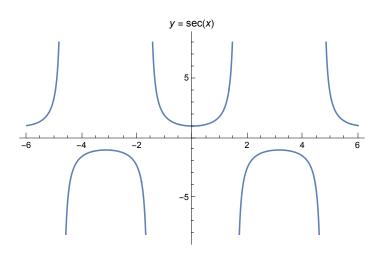


Questions

- What are the domain and range of tan(x)?
- What is $\lim_{x\to\pi/2^-} \tan(x)$?
- What do you think is the standard restricted domain used to define an inverse tangent function, tan⁻¹(x) or arctan(x)?
- Find the solutions closest to 0 to the equation $3 \tan^3(x) + 1 = 0$.

- Since tan and \tan^{-1} are inverse functions, $y = \tan^{-1}(x) \leftrightarrow \tan(y) = x$. Use this along with implicit differentiation to determine the derivative of $\tan^{-1}(x)$, $\frac{dy}{dx} = ?$
- What is the new antidifferentiation formula we can get from this derivative?

Inverse cosine



Questions

- What are the domain and range of cos(x)?
- What do you think is the standard restricted domain used to define an inverse cosine function, cos⁻¹(x) or arccos(x)?
- Since cos and cos⁻¹ are inverse functions, y = cos⁻¹(x) ↔ cos(y) = x. Use this along with implicit differentiation to determine the derivative of cos⁻¹(x), dy/dx = ?
- How does this compare to the derivative of sin⁻¹(x)?

Inverse secant

The graph of $y = \sec(x)$ is

Questions

- What are the domain and range of sec(x)?
- There are two "standard" restricted domain used to define an inverse secant function, sec⁻¹(x) or arcsec(x). What do you think they are?
- Since sec and sec⁻¹ are inverse functions, y = sec⁻¹(x) ↔ sec(y) = x. Use this along with implicit differentiation to determine the derivative of sec⁻¹(x): dy/dx = ?