Section 7.1: Integration By Parts

Integration techniques

Antidifferentiation is the reverse of differentiation. Anything we can learn about antidifferentiation must come from differentiation.

- Power rule: $\frac{d}{dx}(x^n) = n x^{n-1} \longrightarrow \int x^k dx = \frac{1}{k+1} x^{k+1} + C$ if $k \neq -1$.
- Chain rule: $\frac{d}{dx}(F(u(x))) = F'(u(x))u'(x) \longrightarrow \int f(u(x))u'(x) dx = \int f(u) du$

Questions

- What is $\int \frac{1}{1+x^2} dx$?
- What is $\int \sin(2x) e^{\cos(2x)} dx$?

Questions

- What does the product rule say about (u(x)v(x))'.
- Antidifferentiate what you obtained.

Integration by parts

If you can identify u(x) and dv(x) in an integral, try rewriting the integral as $\int u \, dv = u \, v - \int v \, du$

Example

To evaluate $\int x e^x dx$ let's try integration by parts. Identify *u* and *dv*.

u = x $dv = e^{x} dx$

 $av = e^x ax$

This leads to

du = dx

 $v = \int dv = \int e^x \, dx = e^x$

Only one antiderivative is needed; any value of *C* at this point in "+*C*" works. Applying the integration by parts formula $\int u \, dv = u \, v - \int v \, du$ produces

 $\int x e^x dx = x e^x - \int e^x dx$

The new integral is one of our basic integrals. The final answer is

$$\int x e^x dx = x e^x - e^x + C$$

Questions

Consider the integral $\int x \cos(2x) dx$.

- What is $\int x \cos(2x) dx$ if you use integration by parts with u = x and $dv = \cos(2x) dx$?
- What would happen if you try to use integration by parts with u = cos(2x) and dv = x dx?

Question

How can you use integration by parts to evaluate $\int x^2 \sin(3x) dx$?

Question

How can you use integration by parts to evaluate $\int \tan^{-1}(x) dx$?