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Function Range Left end Right end Middle

Polynomials

Line {—00,00} y— too, y — Foo, monotonic
constant slope constant slope

Quadratic {—0,00} y— to0, y — oo, single max/min
accelerating accelerating

Cubic {—0,00} y— *o0, y — Fo0, up to 2 max/min
accelerating accelerating

Piecewise polynomials

Threshold {—00,00} flat flat breakpoint

Hockey stick {—0o0,00} flat or linear flat or linear breakpoint

Piecewise linear {—0o0,00} linear linear breakpoint

Rational

Hyperbolic {0, 00} Yy — 00 y—0 decreasing
or finite

Michaelis-Menten {0, 00} y = 0, linear asymptote saturating

Holling type III {0, 00} y = 0, accelerating asymptote sigmoid

Holling type IV (¢ < 0) {0, 00} y = 0, accelerating asymptote hump-shaped

Exponential-based

Neg. exponential {0, 00} y finite y—0 decreasing

Monomolecular {0, 00} y =0, linear y—0 saturating

Ricker {0, 00} y = 0, linear y—0 hump-shaped

logistic {0, 00} y small, accelerating asymptote sigmoid

Power-based

Power law {0, 00} y—0or — oo y—0or — oo monotonic

von Bertalanffy like logistic

Gompertz ditto

Shepherd like Ricker

Hassell ditto

Non-rectangular hyperbola

like Michaelis-Menten

Table 3.1 Qualitative properties of bestiary functions.

is a good approximation; for y near the asymptote, exponential approach
to the asymptote is a good approximation.)

3.5 BESTIARY OF FUNCTIONS

The remainder of the chapter describes different families of functions that
are useful in ecological modeling: Table 3.1 gives an overview of their quali-
tative properties. This section includes little R code, although the formulas
should be easy to translate into R. You should skim through this section on
the first reading to get an idea of what functions are available. If you begin
to feel bogged down you can skip ahead and use the section for reference as

needed.
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3.5.1 Functions based on polynomials

A polynomial is a function of the form y = 3", a;xt.

Examples

e linear: f(z) = a+bx, where a is the intercept (value when 2 = 0) and
b is the slope. (You know this, right?)

e quadratic: f(x) = a + bz + cx®. The simplest nonlinear model.

e cubics and higher-order polynomials: f(z) = > a;x;. The order or
degree of a polynomial is the highest power that appears in it (so e.g.
f(z) = 2° + 42% + 1 is Sth-order).

Advantages

Polynomials are easy to understand. They are easy to reduce to simpler
functions (nested functions) by setting some of the parameters to zero. High-
order polynomials can fit arbitrarily complex data.

Disadvantages

On the other hand, polynomials are often hard to justify mechanistically
(can you think of a reason an ecological relationship should be a cubic poly-
nomial?). They don’t level off as = goes to 00 — they always go to -oo or
oo as = gets large. Extrapolating polynomials often leads to nonsensically
large or negative values. High-order polynomials can be unstable: following
Forsythe et al. (1977) you can show that extrapolating a high-order poly-
nomial from a fit to US census data from 1900-2000 predicts a population
crash to zero around 2015!

It is sometimes convenient to parameterize polynomials differently.
For example, we could reparameterize the quadratic function y = a; +
asx + agz? as y = a + c(x — b)? (where a; = a + cb?, ag = 2¢b, a3 = c). It’s
now clear that the curve has its minimum at z = b (because (z — b)? is zero
there and positive everywhere else), that y = a at the minimum, and that
¢ governs how fast the curve increases away from its minimum. Sometimes
polynomials can be particularly simple if some of their coefficients are zero:
y = bz (a line through the origin, or direct proportionality, for example, or

y = cz?. Where a polynomial actually represents proportionality or area,



book August 29, 2007

DETERMINISTIC FUNCTIONS 121

rather than being an arbitrary fit to data, you can often simplify in this
way.

The advantages and disadvantages listed above all concern the mathe-
matical and phenomenological properties of polynomials. Sometimes linear
and quadratic polynomials do actually make sense in ecological settings.
For example, a population or resource that accumulates at a constant rate
from outside the system will grow linearly with time. The rates of ecological
or physiological processes (e.g. metabolic cost or resource availability) that
depend on an organism’s skin surface or mouth area will be a quadratic
function of its size (e.g. snout-to-vent length or height).

3.5.1.1 Piecewise polynomial functions

You can make polynomials (and other functions) more flexible by using them
as components of piecewise functions. In this case, different functions apply
over different ranges of the predictor variable. (See p. 136 for information
on using R’s ifelse function to build piecewise functions.)

Examples

e Threshold models: the simplest piecewise function is a simple thresh-
old model — y = a; if = is less than some threshold 7, and y = a9
if x is greater. Hilborn and Mangel (1997) use a threshold function
in an example of the number of eggs a parasitoid lays in a host as a
function of how many she has left (her “egg complement”), although
the original researchers used a logistic function instead (Rosenheim
and Rosen, 1991).

e The hockey stick function (Bacon and Watts, 1971, 1974) is a com-
bination of a constant and a linear piece: typically either flat and
then increasing linearly, or linear and then suddenly hitting a plateau.
Hockey-stick functions have a fairly long history in ecology, at least
as far back as the definition of the Holling type I functional response,
which is supposed to represent foragers like filter feeders that can con-
tinually increase their uptake rate until they suddenly hit a maximum.
Hockey-stick models have recently become more popular in fisheries
modeling, for modeling stock-recruitment curves (Barrowman and My-
ers, 2000), and in ecology, for detecting edges in landscapes (Toms and
Lesperance, 2003)*. Under the name of self-excitable threshold autore-

*It is surely only a coincidence that so much significant work on hockey-stick functions has
been done by Canadians.
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gressive (SETAR) models, such functions have been used to model
density-dependence in population dynamic models of lemmings (Fram-
stad et al., 1997), feral sheep (Grenfell et al., 1998), and moose (Post
et al., 2002); in another population dynamic context, Brannstrém and
Sumpter (2005) call them ramp functions.

e Threshold functions are flat (i.e., the slope is zero) on both sides of
the breakpoint, and hockey sticks are flat on one side. More general
piecewise linear functions have non-zero slope on both sides of the
breakpoint s1:

y=ai+ bz

for x < s1 and
Yy = (a1 + blsl) + bg(ﬂ? — 81)

for > s1. (The extra complications in the formula for > s ensure
that the function is continuous.)

e (Clubic splines are a general-purpose tool for fitting curves to data.
They are piecewise cubic functions that join together smoothly at
transition points called knots. They are typically used as purely phe-
nomenological curve-fitting tools, when you want to fit a smooth curve
to data but don’t particularly care about interpreting its ecological
meaning Wood (2001, 2006). Splines have many of the useful proper-
ties of polynomials (adjustable complexity or smoothness; simple basic
components) without their instability.

Advantages

Piecewise functions make sense if you believe there could be a biological
switch point. For example, in optimal behavior problems theory often pre-
dicts sharp transitions among different behavioral strategies (Hilborn and
Mangel, 1997, ch. 4). Organisms might decide to switch from growth to
reproduction, or to migrate between locations, when they reach a certain
size or when resource supply drops below a threshold. Phenomenologically,
using piecewise functions is a simple way to stop functions from dropping
below zero or increasing indefinitely when such behavior would be unrealis-
tic.

Disadvantages

Piecewise functions present some special technical challenges for parameter
fitting, which probably explains why they have only gained attention more
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Figure 3.7 Piecewise polynomial functions: the first three (threshold, hockey stick, gen-
eral piecewise linear) are all piecewise linear. Splines are piecewise cubic; the
equations are complicated and usually handled by software (see ?spline and
?smooth.spline).
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Figure 3.8 Rational functions.

recently. Using a piecewise function means that the rate of change (the
derivative) changes suddenly at some point. Such a discontinuous change
may make sense, for example, if the last prey refuge in a reef is filled,
but transitions in ecological systems usually happen more smoothly. When
thresholds are imposed phenomenologically to prevent unrealistic behavior,
it may be better to go back to the original biological system and try to
understand what properties of the system would actually stop (e.g.) pop-
ulation densities from becoming negative: would they hit zero suddenly, or
would a gradual approach to zero (perhaps represented by an exponential
function) be more realistic?

3.5.1.2 Rational functions: polynomials in fractions

Rational functions are ratios of polynomials, (3 a;z%)/(} bja?).
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Examples

e The simplest rational function is the hyperbolic function, a/x; this is
often used (e.g.) in models of plant competition, to fit seed production
as a function of plant density. A mechanistic explanation might be
that if resources per unit area are constant, the area available to a
plant for resource exploitation might be proportional to 1/density,
which would translate (assuming uptake, allocation etc. all stay the
same) into a hyperbolically decreasing amount of resource available for
seed production. A better-behaved variant of the hyperbolic function
is a/(b + x), which doesn’t go to infinity when 2 = 0 (Pacala and
Silander, 1987, 1990).

e The next most complicated, and probably the most famous, ratio-
nal function is the Michaelis-Menten function: f(z) = az/(b+ x).
Michaelis and Menten introduced it in the context of enzyme kinetics:
it is also known, by other names, in resource competition theory (as
the Monod function), predator-prey dynamics (Holling type 1T func-
tional response), and fisheries biology (Beverton-Holt model). It starts
at 0 when x = 0 and approaches an asymptote at a as = gets large.
The only major caveat with this function is that it takes surprisingly
long to approach its asymptote: z/(1 + x), which is halfway to its
asymptote when x = 1, still reaches 90% of its asymptote when z = 9.
The Michaelis-Menten function can be parameterized in terms of any
two of the asymptote, half-maximum, initial slope, or their inverses.

The mechanism behind the Michaelis-Menten function in biochem-
istry and ecology (Holling type II) is similar; as substrate (or prey)
become more common, enzymes (or predators) have to take a larger
and larger fraction of their time handling rather than searching for
new items. In fisheries, the Beverton-Holt stock-recruitment function
comes from assuming that over the course of the season the mortality
rate of young-of-the-year is a linear function of their density (Quinn
and Deriso, 1999).

e We can go one more step, going from a linear to a quadratic func-
tion in the denominator, and define a function sometimes known as
the Holling type III functional response: f(z) = ax?/(b* + x?). This
function is sigmoid, or S-shaped. The asymptote is at a; its shape is
quadratic near the origin, starting from zero with slope zero and cur-
vature a/b?; and its half-maximum is at = b. It can occur mechanis-
tically in predator-prey systems because of predator switching from
rare to common prey, predator aggregation, and spatial and other
forms of heterogeneity (Morris, 1997).
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e Some ecologists have extended this family still further to the Holling
type IV functional response: f(z) = ax?/(b+cz+z?). Turchin (2003)
derives this function (which he calls a “mechanistic sigmoidal func-
tional response”) by assuming that the predator attack rate in the
Holling type II functional response is itself an increasing, Michaelis-
Menten function of prey density — that is, predators prefer to pur-
sue more abundant prey. In this case, ¢ > 0. If ¢ < 0, then the
Holling type IV function is unimodal or “hump-shaped”, with a max-
imum at intermediate prey density. FEcologists have used this ver-
sion of the Holling type IV phenomenologically to describe situations
where predator interference or induced prey defenses lead to decreased
predator success at high predator density (Holt, 1983; Collings, 1997;
Wilmshust et al., 1999; Chen, 2004). Whether ¢ is negative or pos-
itive, the Holling type IV reaches an asymptote at a as ¢ — oo. If
¢ < 0, then it has a maximum that occurs at x = —2b/c.

e More complicated rational functions are potentially useful but rarely
used in ecology. The (unnamed) function y = (a+bx)/(1+cx) has been
used to describe species-area curves (Flather, 1996; Tjgrve, 2003).

Advantages

Like polynomials, rational functions are very flexible (you can always add
more terms in the numerator or denominator) and simple to compute; unlike
polynomials, they can reach finite asymptotes at the ends of their range.
In many cases, rational functions make mechanistic sense, arising naturally
from simple models of biological processes such as competition or predation.

Disadvantages

Rational functions can be complicated to analyze because the quotient rule
makes their derivatives complicated. Like the Michaelis-Menten function
they approach their asymptotes very slowly, which makes estimating the
asymptote difficult — although this problem really says more about the
difficulty of getting enough data rather than about the appropriateness of
rational functions as models for ecological systems. Section 3.5.3 shows how
to make rational functions even more flexible by raising some of their terms
to a power, at the cost of making them even harder to analyze.
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3.5.2 Functions based on exponential functions
3.5.2.1 Simple exponentials

The simplest examples of functions based on exponentials are the expo-
nential growth (ae’®) or decay (ae~b*) and saturating exponential growth
(monomolecular, a(1 — e~*®)). The monomolecular function (so named be-
cause it represents the buildup over time of the product of a single-molecule
chemical reaction) is also

e the catalytic curve in infectious disease epidemiology, where it repre-
sents the change over time in the fraction of a cohort that has been
exposed to disease (Anderson and May, 1991);

e the simplest form of the von Bertalanffy growth curve in organismal
biology and fisheries, where it arises from the competing effects of
changes in catabolic and metabolic rates with changes in size (Essing-
ton et al., 2001);

e the Skellam model in population ecology, giving the number of off-
spring in the next year as a function of the adult population size this
year when competition has a particularly simple form (Skellam, 1951;
Briinnstrom and Sumpter, 2005).

These functions have two parameters, the multiplier a which expresses the
starting or final size depending on the function, and the exponential rate b
or “e-folding time” 1/b (the time it takes to reach e times the initial value, or
the initial value divided by e, depending whether b is positive or negative).
The e-folding time can be expressed as a half-life or doubling time (In(2)/b)
as well. Such exponential functions arise naturally from any compounding
process where the population loses or gains a constant proportion per unit
time; one example is Beers’ Law for the decrease in light availability with
depth in a vegetation canopy (Teh, 2006).

The differences in shape between an exponential-based function and its
rational-function analogue (e.g. the monomolecular curve and the Michaelis-
Menten function) are usually subtle. Unless you have a lot of data you're
unlikely to be able to distinguish from the data which fits better, and will
instead have to choose on the basis of which one makes more sense mech-
anistically, or possibly which is more convenient to compute or analyze
(Figure 3.9).
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Figure 3.9 Exponential-based functions. “M-M” in the monomolecular figure is the

Michaelis-Menten function with the same asymptote and initial slope.
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3.5.2.2 Combinations of exponentials with other functions
Ricker function

The Ricker function, az exp(—bx), is a common model for density-dependent
population growth; if per capita fecundity decreases exponentially with den-
sity, then overall population growth will follow the Ricker function. It starts
off growing linearly with slope a and has its maximum at z = 1/r; it’s simi-
lar in shape to the generalized Michaelis-Menten function (RN/(1+(aN)?)).
It is used very widely as a phenomenological model for ecological variables
that start at zero, increase to a peak, and decrease gradually back to zero.

Several authors (Hassell, 1975; Royama, 1992; Brannstrém and Sumpter ]
2005) have derived Ricker equations for the dependence of offspring num-
ber on density, assuming that adults compete with each other to reduce
fecundity; Quinn and Deriso (1999, p. 89) derive the Ricker equation in a
fisheries context, assuming that young-of-year compete with each other and
increase mortality (e.g. via cannibalism).

Logistic function

There are two widely used parameterizations of the logistic function. The
first,
ea+bz

= W (351)

Y
(or equivalently y = 1/(14-e~ (@) comes from a statistical or phenomeno-
logical framework. The function goes from 0 at —oo to 1 at +00. The loca-
tion parameter a shifts the curve left or right: the half-maximum (y = 0.5),
which is also the inflection point, occurs at * = —a/b when the term in the
exponent is 0. The scale parameter b controls the steepness of the curve*.

The second parameterization comes from population ecology:
B K

14+ (% — 1) et
where K is the carrying capacity, ng the value at t = 0, and r the initial per

capita growth rate. (The statistical parameterization is less flexible, with
only two parameters: it has K = 1, ng = €*/(1 + %), and r = b.)

n(t) (3.5.2)

*If we reparameterized the function as exp(b(xz — ¢))/(1 + exp(b(z — ¢))), the half-maximum
would be at c. Since b is still the steepness parameter, we could then shift and steepen the curve
independently.
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The logistic is popular because it’s a simple sigmoid function (although
its rational analogue the Holling type III functional response is also simple)
and because it’s the solution to one of the simplest population-dynamic
models, the logistic equation:

=rn (1 - %) : (3.5.3)

which says that per capita growth rate ((dn/dt)/n) decreases linearly from
a maximum of r when n is much less than K to zero when n = K. Getting
from the logistic equation (3.5.3) to the logistic function (3.5.2) involves
solving the differential equation by integrating by parts, which is tedious
but straightforward (see any calculus book, e.g. Adler (2004)).

In R you can write out the logistic function yourself, using the exp
function, as exp(x)/(1+exp(x)), or you can also use the plogis function.
The hyperbolic tangent (tanh) function is another form of the logistic. Its
range extends from -1 as x — —oo to 1 as * — oo instead of from 0 to 1.

Gompertz function

—ae”

The Gompertz function, f(z) = e bm, is an alternative to the logistic
function. Similar to the logistic, it is accelerating at = 0 and exponentially
approaches 1 as x gets large, but it is asymmetric — the inflection point
or change in curvature occurs 1/e = 1/3 of the way up to the asymptote,
rather than halfway up. In this parameterization the inflection point occurs
at © = 0; you may want to shift the curve ¢ units to the right by using f(x) =

_peb(z—c)
e ae

. If we derive the curves from models of organismal or population
growth, the logistic assumes that growth decreases linearly with size or
density while the Gompertz assumes that growth decreases exponentially.

3.5.3 Functions involving power laws

So far the polynomials involved in our rational functions have been simple
linear or quadratic functions. Ecological modelers sometimes introduce an
arbitrary (fractional) power as a parameter (2°) instead of having all powers
as fixed integer values (e.g. x, 2% 2°); using power laws in this way is often a
phenomenological way to vary the shape of a curve, although these functions
can also be derived mechanistically.

Here are some categories of power-law functions.

e Simple power laws f(z) = az® (for non-integer b; otherwise the func-
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tion is just a polynomial: Figure 3.10a) often describe allometric
growth (e.g. reproductive biomass as a function of diameter at breast
height (Niklas, 1993), or mass as a function of tarsus length in birds);
or quantities related to metabolic rates (Etienne et al., 2006a); or
properties of landscapes with fractal geometry (Halley et al., 2004);
or species-area curves (Tjgrve, 2003).

e The generalized form of the von Bertalanffy growth curve, f(z) =
a(1 —exp(—k(a — d)t))"/=9)  (Figure 3.10b) allows for energy assim-
ilation to change as a function of mass (assimilation = mass?). The
parameter d is often taken to be 2/3, assuming that energy assimi-
lation is proportional to length? and mass is proportional to length?
(Quinn and Deriso, 1999).

e A generalized form of the Michaelis-Menten function, f(z) = az/(b+
z¢) (Figure 3.10c), describes ecological competition (Maynard-Smith
and Slatkin, 1973; Brannstrom and Sumpter, 2005). This model re-
duces to the standard Michaelis-Menten curve when ¢ = 1; 0 < ¢ <
1 corresponds to “contest” (undercompensating) competition, while
¢ > 1 corresponds to “scramble” (overcompensating) competition (the
function has an intermediate maximum for finite densities if ¢ > 1). In
fisheries, this model is called the Shepherd function. Quinn and Deriso
(1999) show how the Shepherd function emerges as a generalization
of the Beverton-Holt function when the density-dependent mortality
coefficient is related to the initial size of the cohort.

e A related function, f(x) = az/(b+z), is known in ecology as the Has-
sell competition function (Hassell, 1975; Brinnstrém and Sumpter,
2005); it is similar to the Shepherd/Maynard-Smith/Slatkin model in
allowing Michaelis-Menten (¢ = 1), undercompensating (¢ < 1) or
overcompensating (¢ > 1) dynamics.

e Persson et al. (1998) used a generalized Ricker equation, y = A(a:% exp(l—l

fﬂ))a, to describe the dependence of attack rate y on predator body
mass x (Figure 3.1 shows the same curve, but as a function of prey
body mass). In fisheries, Ludwig and Walters proposed this func-
tion as a stock-recruitment curve (Quinn and Deriso, 1999). Bellows
(1981) suggested a slightly different form of the generalized Ricker,
y = zexp(r(l — (a/z)*)) (note the power is inside the exponent in-
stead of outside), to model density-dependent population growth.

e Emlen (1996) used a generalized form of the logistic, y = a +b/(1 +
cexp(—dz®)) extended both to allow a non-zero intercept (via the a
parameter, discussed above under “Scaling and shifting”) and also to
allow more flexibility in the shape of the curve via the power exponent
e.
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Figure 3.10 Power-based functions. The lower left panel shows the Ricker function for
comparison with the Shepherd and Hassell functions. The lower right shows
the Michaelis-Menten function for comparison with the non-rectangular hy-
perbola.

e The non-rectangular hyperbola (Figure 3.10, lower right), based on
first principles of plant physiology, describes the photosynthetic rate
P as a function of light availability I:

1
P(I) = % (aI +pmax — \/(OZI +pmax)2 — 49CkIpmaX) R

where « is photosynthetic efficiency (and initial slope); pmax is the
maximum photosynthetic rate (asymptote); and 6 is a sharpness pa-
rameter. In the limit as & — 0, the function becomes a Michaelis-
Menten function: in the limit as § — 1, it becomes piecewise linear (a
hockey stick: Thornley, 2002).
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Advantages

Functions incorporating power laws are flexible, especially since the power
parameter is usually added to an existing model that already allows for
changes in location, scale, and curvature. In many mechanistically derived
power-law functions the value of the exponent comes from intrinsic geomet-
ric or allometric properties of the system and hence does not have to be
estimated from data.

Disadvantages

Many different mechanisms can lead to power-law behavior (Mitzenmacher,
2003). It can be tempting but is often misguided to reason backward from
an observed pattern to infer something about the meaning of a particular
estimated parameter.

Despite the apparent simplicity of the formulas, estimating exponents
from data can be numerically challenging — leading to poorly constrained
or unstable estimates. The exponent of the non-rectangular hyperbola, for
example, is notoriously difficult to estimate from reasonable-size data sets
(Thornley, 2002). (We will see another example when we try to fit the
Shepherd model to data in Chapter 5.)

3.5.4 Other possibilities

Of course, there is no way I can enumerate all the functions used even within
traditional population ecology, let alone fisheries, forestry, ecosystem, and
physiological ecology. Haefner (1996, pp. 90-96) gives an alternative list of
function types, focusing on functions used in physiological and ecosystem
ecology, while Turchin (2003, Table 4.1, p. 81) presents a variety of predator
functional response models. Some other occasionally useful categories are:

e curves based on other simple mathematical functions: for example,
trigonometric functions like sines and cosines (useful for fitting diurnal
or seasonal patterns), and functions based on logarithms.

e generalized or “portmanteau” functions: these are complex, highly flex-
ible functions that reduce to various simpler functions for particular
parameter values. For example, the four-parameter Richards growth
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model Ky

1/ks
(e () )

includes the monomolecular, Gompertz, von Bertalanffy, and logis-
tic equation as special cases (Haefner, 1996; Damgaard et al., 2002).
Schnute (1981) defines a still more generalized growth model.

y = (3.5.4)

e Functions not in closed form: sometimes it’s possible to define the
dynamics of a population, but not to find an analytical formula (what
mathematicians would call a “closed-form solution”) that describes the
resulting population density.

— The theta-logistic or generalized logistic model (Nelder, 1961;
Richards, 1959; Thomas et al., 1980; Sibly et al., 2005) gener-
alizes the logistic equation by adding a power (6) to the logistic
growth equation given above (3.5.3):

dn n\o

—=m|1l- (—) . 3.5.5

i (- &)) 353)
When 6 = 1 this equation reduces to the logistic equation, but
when 6 # 1 there is no closed-form solution for n(t) — i.e., no
solution we can write down in mathematical notation. You can

use the odesolve library in R to solve the differential equation
numerically and get a value for a particular set of parameters.

— the Rogers random-predator equation (Rogers, 1972; Juliano, 1993)}
describes the numbers of prey eaten by predators, or the num-
bers of prey remaining after a certain amount of time in situ-
ations where the prey population becomes depleted. Like the
theta-logistic, the Rogers equation has no closed-form solution,
but it can be written in terms of a mathematical function called
the Lambert W function (Corless et al., 1996). (See ?lambertW
in the emdbook package.)

3.6 CONCLUSION

The first part of this chapter has shown you (or reminded you of) some
basic tools for understanding the mathematical functions used in ecological
modeling — slopes, critical points, derivatives, and limits — and how to
use them to figure out the basic properties of functions you come across in
your work. The second part of the chapter briefly reviewed some common
functions. You will certainly run across others, but the tools from the first
part should help you figure out how they work.
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3.7 R SUPPLEMENT

3.7.1 Plotting functions in various ways

Using curve:

Plot a Michaelis-Menten curve:

> curve(2 * x/(1 + x))

You do need to specify the parameters: if you haven’t defined a and
b previously curve (axx/(b+x)) will give you an error. But if you're going
to use a function a lot it can be helpful to define a function:

> micmen <- function(x, a =2, b =1) {
+ a * x/(b + x)

+ }

Now plot several curves (being more specific about the desired 2 and
y ranges; changing colors; and adding a horizontal line (abline(h=...)) to
show the asymptote).

> curve(micmen(x), from = 0, to = 8, ylim = c(0, 10))
> curve(micmen(x, b = 3), add = TRUE, col = 2)

> curve(micmen(x, a = 8), add = TRUE, col = 3)

>

abline(h = 8)

Sometimes you may want to do things more manually. Use seq to
define z values:

> xvec <- seq(0, 10, by = 0.1)

Then use vectorization (yvec=micmen (xvec)) or sapply (yvec=sapply (xvec,micmen) )]
oraforloop (for i in (1:length(xvec)) { yvec[il=micmen(xvec[il)1})]
to calculate the y values. Use plot(xvec,yvec,...), lines(xvec,yvec,...) J]
etc. (with options you learned Chapter 2) to produce the graphics.
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3.7.2 Piecewise functions using ifelse

The ifelse function picks one of two numbers (or values from one of two
vectors) depending on a logical condition. For example, a simple threshold
function:

> curve(ifelse(x < 5, 1, 2), from = 0, to = 10)
or a piecewise linear function:

> curve(ifelse(x < 5, 1 +x, 6 - 3 * (x - 5)), from = 0,
+ to = 10)

You can also nest ifelse functions to get more than one switching point:

> curve(ifelse(x < 5, 1 + x, ifelse(x < 8, 6 - 3 *
+ (x-5), -3+2%* (x-8))), from = 0, to = 10)

3.7.3 Derivatives

You can use D or deriv to calculate derivatives (although R will not simplify
the results at all): D gives you a relatively simple answer, while deriv gives
you a function that will compute the function and its derivative for specified
values of  (you need to use attr(...,"grad") to retrieve the derivative
— see below). To use either of these functions, you need to use expression
to stop R from trying to interpret the formula.

> D(expression(log(x)), "x")

1/x

> D(expression(x~2), "x")

2 *x X

> logist <- expression(exp(x)/(1 + exp(x)))
> dfun <- deriv(logist, "x", function.arg = TRUE)
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> xvec <- seq(-4, 4, length = 40)

> y <- dfun(xvec)

> plot(xvec, y)

> lines(xvec, attr(y, "grad"))

Use eval to fill in parameter values:

v

dl <- D(expression(a * x/(b + x)), "x")
> di

a/(b +x) - ax*xx/(b+ x)"2

> eval(dil, list(a =2, b=1, x = 3))

[1] 0.125



