
Overview of Chapters 1-3

February 24, 2020

Abstract

Your test will resemble the problems from your homework assign-
ments, and problems from previous tests I’ve given. You will probably
have 7 equally weighted questions or so (one every ten minutes!), one
of which may involve several true/false questions (like the self-tests at
the end of each chapter - answers are at the end of the book).

1 Section 1.1

We are introduced to statements, logical connectives, and wffs.

An implication is an argument, or theorem, which we may seek to prove. It
is false if and only if the hypothesis (antecedent) is true while the conclusion
(consequent) is false. The truth table for this logical connective is very
important for understanding much of what follows!

Truth tables can prove tautologies (statements which are always true).

TautologyTest can prove tautologies of the form P → Q, which it does by
contradiction: assume both P and Q′, and then break down each until all
statement letters have truth values. If a statement letter is both true and
false (a contradiction) then P ∧ Q′ is false, and the implication is true - a
tautology.

1

2 Section 1.2

Propositional logic allows us to test arguments

P1 ∧ P2 ∧ · · · ∧ Pn → Q

to see if they’re valid (tautologies).

Create a proof sequence using hypothesis or derivation rules (e.g. modus po-
nens). There are equivalence rules (such as DeMorgan’s laws), and inference
rules (e.g. modus tollens) which only operate in one direction.

The deduction method helps us prove implications: the antecedent joins the
list of hypotheses, and we simply prove the consequent of the implication.

One seemingly difficult task is converting English arguments into wffs.

3 Section 1.3

We add a variable to statements to create predicate wffs. We then consider
statements like “for all integers....”, or “there is an integer such that....”:
that is, we quantify the predicate, using ∀ and ∃.

By introducing a variable we require a domain, called the domain of inter-
pretation (non-empty).

Quantifiers have a scope, which indicates the part of a wff to which the
quantifier applies.

Once again, translating English arguments into wffs is one of the tough chal-
lenges.

A few rules of thumb:
• ∀ tends to go with →

• ∃ tends to go with ∧

2

4 Section 1.4

We use predicate logic to prove predicate wffs, including new rules such as
instantiation and generalization (as well as all the old familiar propositional
logic rules).

Big Idea: strip off the quantifiers, use derivation rules on the wffs, and put
quantifiers back on as necessary. Table 1.17 outlines limitations on stripping
and putting.

A few rules of thumb:
• ei before ui.

• Don’t use ug on P (x) deduced from a hypothesis in which x is free, or
by ei from another wff in which x is free:

1.P (x) hyp

2.(∀x)P (x) incorrect ug

1.(∀x)(∃y)Q(x, y) hyp

2.(∃y)Q(x, y) 1, ui

3.Q(x, a) 2, ei
4.(∀x)Q(x, a) incorrect ug

5 Section 2.1

We look at a variety of proof techniques, including exhaustion, by contradic-
tion, by contraposition, direct; and one “disproof” technique: counterexam-
ple.

6 Section 2.2

Induction is a proof technique which is useful for demonstrating a prop-
erty for an infinite ladder of propositions (think of our property as being
indexed by n, as in P (n). Induction begins with a base case (or an anchor)
and then proceeds via an inductive case (often P (k) → P (k + 1)).

3

Table 1: Summary of useful proof techniques, from Gersting, p. 91.

Proof Technique Approach to Prove P → Q Remarks

Exhaustive Proof Demonstrate P → Q for all cases. Cases finite
Direct Proof Assume P , deduce Q. Standard approach
Contraposition Assume Q′, deduce P ′. Q′ gives more ammo?
Contradiction Assume P ∧ Q′, deduce contradiction.

There are two different (but equivalent) principles of induction, the first and
second. The second appears to assume more than the first: the inductive
hypothesis in the second principle is that the property is true for all cases up
to and including the kth case.

7 Sections 3.1-3.3

Recursion in section 3.1 looks very much like induction: the idea is that
we have a base case (or cases), and from there we generate additional cases.
Unlike induction, the set of things we generate may not be easily indexed to
the integers. For example,

• the palindromes on binary strings, or

• the construction of wffs using the logical connectives.

In this section we see how to solve one particular recurrence relation, the
linear, first-order, constant-coefficient recurrence relation.

Once we deduce this formula (and prove it by induction), we needn’t ever
solve another linear, first-order, constant-coefficient recurrence relation from
scratch: we can just invoke the formula. This is our quest, the holy grail!

The general method is to “guess, check, and verify”: compute some terms,
look for a pattern, characterize the pattern, then prove it.

In the analysis of algorithms we are interested in efficiency, and will count op-
erations in order to compare competing algorithms. We can sometimes count

4

operations directly, but may resort to recursion to count. We’re interested
in the worst-case scenario.

A different variety of recurrence relation occurs in the analysis of algorithms,
when we consider “divide and conquer” algorithms (such as BinarySearch).

By changing variables, we can get a closed form solution for the number of
operations for these “divide and conquer” algorithms.

5

