
Section 6.3: Decision Trees

March 25, 2020

Abstract

Decision trees are defined, and some examples given (almost
every tree will be binary in what follows). Binary search trees
store data conveniently for searching later. Some bounds on
worst case scenarios for searching and sorting are obtained.

1 Decision Tree Definition and Terminol-

ogy

Definition: a decision tree is a tree in which

• internal nodes represent actions,

• arcs represent outcomes of an action, and

• leaves represent final outcomes.

2 Examples of decision trees in action

A decision tree for trees! For example, the Identification of Common
Trees of Iowa:
http://www.extension.iastate.edu/forestry/iowa_trees/key/key.html

Here’s one from a recent project, that could be improved: Common
Trees of Campbell County:
http://www.norsemathology.org/longa/classes/mat385/projects/King/BinaryLeaves/main.html

http://www.extension.iastate.edu/forestry/iowa_trees/key/key.html
http://www.norsemathology.org/longa/classes/mat385/projects/King/BinaryLeaves/main.html


Figure 1: Figure 6.51, p. 529: Results of tossing a coin 5 times, no two
heads in a row (binary decision tree). One of my students once made
an interesting observation: how many nodes are there at each depth?

This is a model of the Fibonacci rabbit problem, where no two
successive heads means that H represents an immature rabbit pair, and
it must mature first (turn into a T). A T produces both an H – immature
pair – and continues. Internal nodes hence represent different states of
pairs in preparation for development, and arcs represent the different
outcomes (or processes) – maturation, reproduction, or persistence.

Figure 2: Figure 6.52, p. 530: Sequential Search on 5 elements (binary
tree); Figure 6.53, p. 531: Binary Search on a sorted list (ternary tree,
although it appears binary since those leaves corresponding to equality
have been suppressed). Notice how clumsy this binary tree looks, since
a power of two was used (8 elements), rather than one less than a power
of two (7=23 − 1), which would have resulted in a full binary tree.



3 Lower Bounds on Searching

Table 1: Adding one more node to a full binary tree (the most efficient
way of storing those nodes) bumps the depth up 1, so that if there are
2d nodes, the depth is (at least) d. Hence, in the case of powers of 2,
d = log m.

Depth d Nodes m Nodes by depth
0 1 = 21 − 1 1
1 3 = 22 − 1 1+2
2 7 = 23 − 1 1+2+4
3 15 = 24 − 1 1+2+4+8
...

...
...

In particular, here are some properties about binary trees:

a. Any binary tree of depth d has at most m ≤ 2d+1 − 1 nodes.
(Proof: look at the full binary tree, Table (1), as it has the most
nodes per depth.)

b. Any binary tree with m nodes has depth d ≥ ⌊log2 m⌋, and ⌊x⌋ is
the floor function (meaning the greatest integer less than or equal
to x). Again, the proof can be motivated simply by studying the
full binary tree situation. However, a more formal proof is by
contradiction and interesting (p. 532):

Proof: (Any binary tree with m nodes has depth d ≥ ⌊log2(m)⌋.)

• Assume d < ⌊log2(m)⌋: then d ≤ ⌊log2(m)⌋ − 1.

• From property a above, m ≤ 2d+1 − 1 ≤ 2⌊log2
(m)⌋−1+1 − 1 ≤

2log
2
(m) − 1 = m − 1.

Therefore, since m ≤ m − 1 is a contradiction, d ≥ ⌊log2(m)⌋.

These facts lead to the following

Theorem (on the lower bound for searching): Any algorithm that
solves the search problem for an m-element list by comparing the target
element x to the list items must do at least ⌊log2(m)⌋+ 1 comparisons
in the worst case.

Since a general searching algorithm must offer the possibility of
comparing x to each element of the list, one must have at least m

comparisons (hence m internal nodes in the search tree).
The “+1” comes about because a decision tree representing the

search problem has leaves which report the outcome of the search: hence
its depth – which actually reports the number of comparisons in the



worst case – is 1 more than the depth of a tree containing only the
internal nodes (representing the comparisons themselves). So the result
we’ve used (d ≥ ⌊log2(m)⌋) refers to the comparison tree, and we tack
on 1 to give the actual decision tree.

For example, at depth 0 we make the first comparison: the depth of
the last internal node is actually 1 less than the number of comparisons
we make, which is given by the depth of the tree (including its leaves).

If, in its worst case, an algorithm does at most this lower bound on worst
case behavior is an optimal algorithm in its worst-case behavior.
Binary search is optimal (as seen, for example, in Practice 24).

Example: Practice #25, p. 532

4 Binary Search Tree

The Binary search algorithm required a sorted list; if your data is
unsorted (it may be changing dynamically in time, if you’re updating
a database of customers, for example), you can populate a tree which
approximates a sorted list, and then use a modified search algorithm
(binary tree search) to search the list. A binary search tree is
constructed as follows:

• The first item in the list is the root;

• Successive items are inserted by comparing them to existing nodes,
from the root node: if less than a node, descend to the left child
and iterate; if greater than, descend to the right child.

• If, in descending, there is no child, you create a new node.

For example,

Figure 3: Figure 6.55: tree obtained from entering 9, 12, 10, 5, 8, 2,
14, in that order

Example: Practice #26, p. 535.

The binary tree search algorithm works in the same way as you’d in-
troduce a new node, only the algorithm terminates if



• the element is equal to a node, or

• the element is unequal to a leaf of the binary search tree.

In this case the binary search tree serves as the trunk of the decision
tree for the binary tree search algorithm (minus the leaves).

Example: Exercise #9, p. 537.

What’s the worst way to enter the data into a binary search tree, if one
is seeking to create a balanced tree?

5 Sorting

Examine Figure 6.56, p. 535:

Figure 4: Figure 6.56, p. 535: Sorting a list (binary tree, provided
distinct list elements)

In this case, we’re sorting a three-element list using a decision tree.
The author says this algorithm is “not particularly astute”: why?

Assuming no equal elements in the list, then this is indeed a binary
(rather than ternary tree, with = included). In this case, we can also
get a lower bound on sorting a list with n elements:

• There are n! possible sorted lists, and there must be at least that
many leaves p (p ≥ n!). (In Figure 6.56, there are eight leaves,
but only 6=3! different sorted lists).

• A worst-case final outcome in the decision tree is given by the
depth d of the tree (with the number of comparisons being one
fewer than that, d − 1).

• Since the tree is binary, p ≤ 2d (the maximum number of leaves
possible at depth d).



• Taking logs, we get log2(p) ≤ d, or d ≥ ⌈log2(p)⌉, where ⌈x⌉ is the
ceiling function, which yields the smallest integer greater than
or equal to x.

• Hence, d ≥ ⌈log2(n!)⌉.

This is the Theorem on the lower bound for sorting: that you have
to go to at least a depth of ⌈log2(n!)⌉ in the worst case. Exercise #23,
p. 539, shows that this lower bound (⌈log2(n!)⌉) is on the order of
n log2(n) (as we discovered for mergesort).

It’s easy to show that log2(n!) ≤ n log2(n):

log2(n!) =
n∑

i=1

log2(i) ≤
n∑

i=1

log2(n) = n log2(n)

It’s not quite so easy to show that ∃c > 0 such that cn log2(n) ≤
log2(n!)....

log(n!) = log[n · (n − 1) · · · 2 · 1]
= log(n) + log(n − 1) + . . . + log(2) + log(1)
≥ log(n) + log(n − 1) + . . . + log(ceiling(n

2
))

≥ log(ceiling(n

2
)) + log(ceiling(n

2
)) + . . . + log(ceiling(n

2
))

≥ (ceiling(n

2
)) log(ceiling(n

2
))

≥ n

2
log(n

2
) = n

2
(log(n) − log(2))

≥ n

2
(log(n) − 1) = n

4
log(n) + n

4
log(n) − n

2
= n

4
log(n) + n

4
(log(n) − 2)

≥ n

4
log(n) (when n ≥ 4)

Example: Exercise #15, p. 538 (using a ternary tree)
The solution boils down to this: how many comparisons can one

cram into a ternary tree of a given depth? (What if there were nine
coins?)


	Decision Tree Definition and Terminology
	Examples of decision trees in action
	Lower Bounds on Searching
	Binary Search Tree
	Sorting

