Section 8.1: Boolean Algebra
Structure
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Abstract

First of all, note that we’re only reading 8.1 through p. 626
(up to Isomorphic Boolean Algebras).

A Boolean algebra (named after George Boolell) is a generaliza-
tion of both the propositional logic and the set theory we studied
earlier this term. We are going to focus on using it to under-
stand the basic elements of (computer) logic, however, which is
based on a binary (0,1) alphabet.

In this first section we are introduced to the fundamental
concepts of Boolean algebra.

1 Definition and Terminology

Definition: a Boolean Algebra is a set B on which are defined two

binary operations + and -, and one unary operation’, and in which there
are two distinct elements 0 and 1 such that the following properties hold . L\ D/fz"‘/
. —_— 1 o
for all x,y, 2 € B: g D,\/\/\\9 o_p e :
la.z+y=y+ux b.x-y=y-x commutative property
2a. (x+y)+z=a+ (y+2) 20. (x-y)-z=x-(y-2) associative property
3a. v+ (y-2z)=(x+y)-(x+2) 3b.xv-(y+z)=(x-y)+(r-2) distributive property
daTFO==x 4b. x -1 == identity property
Sa. x + 12 =1 5b. x -2’ = complement property
-— . L

The element 2’ is called the complement of x. The algebra may be
denoted [B,+,-,,0,1].
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Of these properties, certainly the distributive property 3a. may seem
the strangest, since it obviously doesn’t hold for the usual suspects +
and -. However these aren’t the usual suspects!

Notice the beauti@r (llial/lty) in this definition: the
roles of + and - are exactly reversed, as are the special elements 0 and
1.


http://www.gap-system.org/~history/Biographies/Boole.html

Question: how are these reflected in the properties of propositional + (/ — Vv
logic that we studied earlier this term?

A change in notation: Speaking of propositional logic, as we move 'f _
forward one change that I'll want you to make is to switch to thinking é ég i
of truth functions, instead of wifs: !

f:{T>F}n_>{T’F}>

which take elements of the Cartisian product {7, F'}"™ into the set
{T, F'}. We're doing algebra, afterall, so it seems reasonable that we’ll
want to operate on variables with functions.

So we’ll want to think of implication, for example, as a function of
two variables (wffs) of the form f : {T, F}* — {T, F'}. If we wrote out
the truth table, there would be four rows for the domain (all ordered
pairs of T, F), and the range values would be in the right column.

R 4w T
T|F F
T A (ne) - F

Furthermore, we’ll often want to replace “T” and “F” with 1 and 0
from now on.

There’s an advantage to the function notation: we can speak of two
functions being equal (=), to mean that their corresponding wffs are
equivalent ( <= ). Equality is a little easier to throw around....

In Example 2, p. 621, which illustrates the world’s simplest Boolean

Algebra, the set B = {0, 1} consists of only two elements (so they must ( (% £ . ) l_]

be our distinguished elements), and the binary operations of + and - R B (

are given by x +vy = maz(z,y) and by x-y = min(z,y). Complements

are given by 0 =1 and 17 =0. — f% : , 'ﬁw‘ﬂ.{‘i 1‘ Se W

Example: Practice 1, p. 621 : Verify property 4b for the Boolean C an ﬂ/\: e 77\,‘.-3 Ly
algebra of Example 2. — 2 howns Lot
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1.1 Idempotence S TANNS 040 =0 . -
Curiously enoughin a Boolean algebra (this is the idem- rax <°l°7 c9 -
potent property. You'll want to remember that one, for any proofs!) I « 0 =7
And since z 4+ = x, we must have by the beautiful symmetry . > /
of the operations. This symmetry, which you have already encountered PR (1 ,0) N -
as duality, means that we only have to do half the work most of the )
time (or that we oftentimes get something for free!). D LA { ’\? /‘w'_{\ Z/

ex l\«k/s'*"o*-\ .I
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You may have bumped into the notion of idempotence in linear algebra: 0~ . ! ] 54
for example, projection matrices are idempotent, such as S &(

1 00 [ GO
010 C=|oce (-C#*C
000 1o 0

This matrix projects three-dimensional space onto the first and second
dimensions; and proj

ecting onto those dimensions a second time doesn’t
change anything (i.e.,. However,

in a Boolean al this
property is true for every element!
/\ﬁ

('\
Example: Practice 2, p. 624

a. What does the idempotent property of Example 3 become in the
context of propositional logic?

A:

XML K

b. What does it become in the context of set theory? >

c. Let’s prove the dual property - x = x. We get it for free by ‘7( [) X T K
duality (but we can prove it, of course, using one of my favorite
tricks in the book). J X =X
)( 4 X X ffw'ti ¢— A \/
. ({22
Example: Practice 3, p. 624 (

-

a. Prove that the property x + 1 = 1 holds in any Boolean algebra.
Give a reason for each step.

Pve - XX =X

b. What is the dual property? DM‘J\', Lo X R % 0 [‘-//\‘)
X+l = (— 7

ﬁﬁm / x»@ = O =
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1.2 Complements are Unique

Given an element x of the set B of a Boolean algebra, the complement
2’ is the unique element of B with the property that

s
x4+ =1land z-2'=0

Furthermore, if you ever find an element a such that

’/ﬂd

zt+a=1and z-a=0



then g = 2'. (The proof is on p. 625.)
P 4

2 Hints for proving Boolean Algebra Equal-

ities (p. 624)

Usually the best approach is to start with the more complicated

expression and try to show that it reduces to the simpler expres-
sion via the axioms of the Boolean algebra.

It may help to frame the argument in terms of either set theory

or propositional logic, to give you a framework for understanding

the thrust of the argument.

NaC N

C
Think of adding some form of 0 (like x-z’) or multiplying by some

form of 1 (like # + 2’). [These are my among my favorite tricks

in mathematicsl]

over multiplication (just because it seems weird).

.\_/_\—)

3 Examples

Example: Exercise 8, p. 633 : Prove De Morgan’s Laws for any

= ()

Boolean algebra, e.g. A

(@t+y)=a"y
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Example: Exercise 14, p. 634 : Prove that in any Boolean algebra

Remember the uniqueness of complements.
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Don’t forget property 3a, the distributive property of addi@

Remember the idempotent properties: x +x = x and z - = = x.
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Example: Exercise 16a, p. 634 : Prove that in any Boolean algebra
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4 One last cool thing...

This section ends “in the weeds” a bit, but the upshot is really inter- .@ a 3&% o

esting: the characterization of all finite Boolean algebras. It turns out

that ew@maan you think [ 4+

of a finite Boolean algebra with 2" elements? N e
Then it turns out that ex:;g_ﬁgite}oolwyc to /&* (

every other finite Boolean algebra of the same or@. The power... of T PR

“the Power set!
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2Subsets of a set S of order n, with intersection and union, and special elements
S and @.



	Definition and Terminology
	Idempotence
	Complements are Unique

	Hints for proving Boolean Algebra Equalities (p. 624)
	Examples
	One last cool thing...

