
Section 8.2: Logic Networks

April 13, 2020

Abstract

We examine the relationship between the abstract structure
of a Boolean algebra and the practical problem of creating (opti-
mal!) logic networks for solving problems. There is a fundamen-
tal equivalence between Truth Functions, Boolean Expressions,
and Logic Networks which allows us to pass from one to the
other. While a problem might be easiest formulated in terms of
a truth function, we might then recast it as a Boolean expres-
sion to then feed into a logic network. Then Boolean algebra
provides us with a simple mechanism by which to simplify the
expressions, and hence to simplify the underlying logic network.

We’ll examine the binary adder (and half-adder) as a partic-
ular example, which will later be implemented as a Finite State
Machine.

1 An Example Application, and Funda-

mental Parallels

Example: Two light switches, one light!

The problem is as follows: A light at the bottom of some stairs is
controlled by two light switches, one at each end of the stairs. The two
switches should be able to control the light independently. How do
we wire the light?

• A Truth Function: f(s1, s2) = L



• A Boolean Expression (find two equivalent Boolean expres-
sions)

• A Logic Network (Basic Components, Mechanics, and Conven-
tions)

• Input or output lines are not tied together except by passing
through gates:

– OR gate

– AND gate

– NOT gate

• Lines can be split to serve as input to more than one device.



• There are no loops, with output of a gate serving as input to the
same gate. (feedback).

• There are no delay elements.

Figure 8.6, p. 638, shows how to wire an “or” – we do it in parallel
(“and” is wired in series).

2 Applications

2.1 Converting Truth Tables to Boolean Expres-
sions (Canonical Sum-of-Products Form)

Example: Practice 11, p. 645

Example: Exercise 15, p. 657

(notice that you can easily simplify that canonical sum-of-products,
using some Boolean algebra.)

2.2 Converting Boolean Expressions to Logic Net-
works

Example: Practice 11, p. 645 (reprise)



Example: Exercise 2, p. 655

2.3 Converting Logic Networks to Truth Functions

or Boolean Expressions

Example: Exercise 5, p. 655

2.4 Simplifying Canonical Form

We can use properties of Boolean algebra to simplify the canonical
form, creating a much simpler logic network as a result.

Example: Practice 11, p. 645 (reprise)

Wouldn’t it be nice if there were some systematic way of doing this?
That’s the subject matter of the next section! We’ll see two different
ways to simplify a cannonical sum of products.



2.5 An example: Adding Binary numbers

2.5.1 Half-Adders

Half-Adder: Adds two binary digits.

s = x′

1
x2 + x1x

′

2

c = x1x2

s is the result of an “XOR” operation (exclusive or) of the two inputs,
whereas c is the product of the two inputs. Note, however, that the
half-adder doesn’t implement s in this way: instead,

s = (x1 + x2) · (x1x2)
′

Questions:
a. How?

b. Why?

2.5.2 Full-Adders

Full-Adder: Adds two digits plus the carry digit from the preceding
step (which we can create out of two half-adders!).

• Given the preceding carry digit ci−1, and binary digits xi and yi.

• We’ll use a half-adder to add xi to yi, obtaining write digit σ and
carry digit γ.

• Then use a half-adder to add the carry digit ci−1 to σ; the write
digit is si, and call the carry digit c.

• To get the carry digit ci, compare the carry digits c and γ: if
either gives a 1, then ci = 1 (so it’s an “or”).

Let’s derive all that from the truth functions, representing the sum
from the full-adder:

ci−1 xi yi ci si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1



So the canonical sum of products forms of each function are

si(ci−1, xi, yi) = c′
i−1

x′

i
yi

+ c′
i−1

xiy
′

i

+ ci−1x
′

i
y′

i

+ ci−1xiyi

= c′
i−1

(x′

i
yi + xiy

′

i
) + ci−1(x

′

i
yi + xiy

′

i
)′

and

ci(ci−1, xi, yi) = c′
i−1

xiyi

+ ci−1x
′

i
yi

+ ci−1xiy
′

i

+ ci−1xiyi

= xiyi + ci−1(x
′

i
yi + xiy

′

i
)

We recognize these quantities in terms of half-adders:

• We recognize the write digit σ and the carry digit γ of the half-
adder of xi and yi.

• Then si is just the write digit s of the half-adder of ci−1 and σ;

• Meanwhile, ci is the sum of γ and the carry digit c of the half-
adder of ci−1 and σ.

• That is illustrated in this figure:

Figure 1: The full-adder takes input digits xi and yi, as well as the
carry digit ci−1 from the previous step and computes write digit si and
carry digit ci. Then do it again!

Example: Practice 12, p. 650


	An Example Application, and Fundamental Parallels
	Applications
	Converting Truth Tables to Boolean Expressions (Canonical Sum-of-Products Form)
	Converting Boolean Expressions to Logic Networks
	Converting Logic Networks to Truth Functions or Boolean Expressions
	Simplifying Canonical Form
	An example: Adding Binary numbers
	Half-Adders
	Full-Adders



