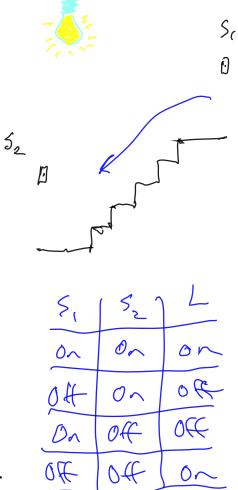
Section 8.2: Logic Networks

April 13, 2020

Abstract

We examine the relationship between the abstract structure of a Boolean algebra and the practical problem of creating (optimal!) logic networks for solving problems. There is a fundamental equivalence between Truth Functions, Boolean Expressions, and Logic Networks which allows us to pass from one to the other. While a problem might be easiest formulated in terms of a truth function, we might then recast it as a Boolean expression to then feed into a logic network. Then Boolean algebra provides us with a simple mechanism by which to simplify the expressions, and hence to simplify the underlying logic network.

We'll examine the binary adder (and half-adder) as a particular example, which will later be implemented as a Finite State Machine.



1 An Example Application, and Fundamental Parallels

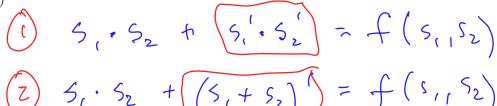
Example: Two light switches, one light!

The problem is as follows: A light at the bottom of some stairs is controlled by two light switches, one at each end of the stairs. The two switches should be able to control the light **independently**. How do we wire the light?

• A Truth Function: $f(s_1, s_2) = L$

Truth function

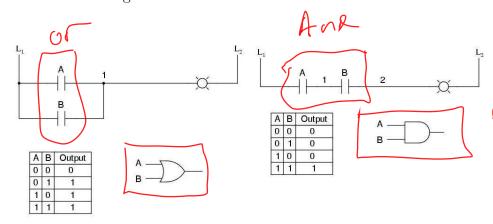
• A Boolean Expression (find <u>two</u> equivalent Boolean expressions)



Boolean Expression(s)

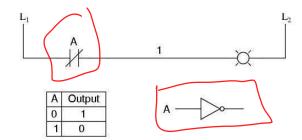
• A Logic Network (Basic Components, Mechanics, and Conventions)

- Input or output lines are not tied together except by passing through gates:
 - OR gate
 - AND gate



5, 100 5, 100

- NOT gate



Logic Network

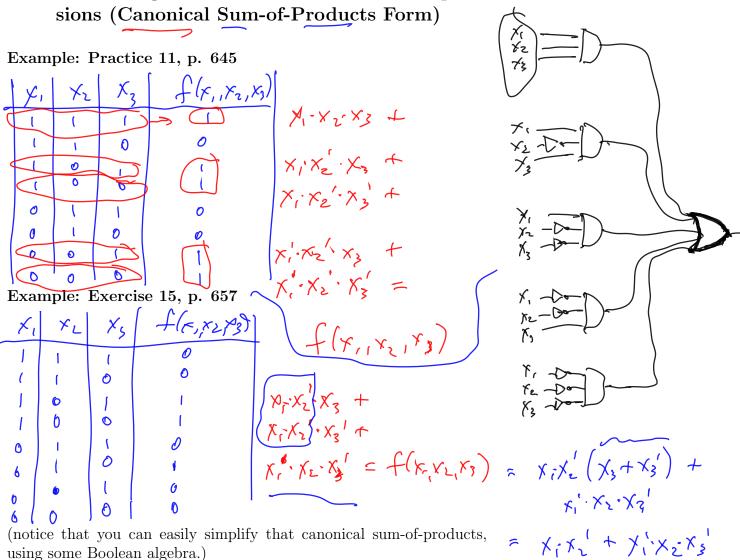
• Lines can be split to serve as input to more than one device.

- There are no loops, with output of a gate serving as input to the same gate. (feedback).
- There are no delay elements.

Figure 8.6, p. 638, shows how to wire an "or" – we do it in parallel ("and" is wired in series).

2 Applications

2.1 Converting Truth Tables to Boolean Expressions (Canonical Sum-of-Products Form)



2.2 Converting Boolean Expressions to Logic Networks

Example: Practice 11, p. 645 (reprise)

Turn into a logic network

Example: Exercise 2, p. 655
$$\frac{(\chi_1 + \chi_2)' + \chi_1' \chi_3}{(\chi_1 + \chi_2)' + \chi_1' \chi_3} = f(\chi_1, \chi_2, \chi_3)$$

$$= \chi_1' \cdot \chi_2' + \chi_1' \chi_3$$

$$= \chi_1' \cdot (\chi_2' + \chi_3) + easier fo help
$$= \chi_1' \cdot (\chi_2' + \chi_3) + easier fo help$$

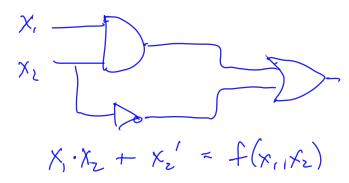
$$= \chi_1' \cdot (\chi_2' + \chi_3) + easier fo help
$$= \chi_1' \cdot (\chi_2' + \chi_3) + easier fo help$$

$$= \chi_1' \cdot (\chi_2' + \chi_3) + easier fo help
$$= \chi_1' \cdot (\chi_2' + \chi_3) + easier fo help$$$$$$$$

	χ,	χ _ε	/ ×,	f (x, x2, x3)
	1	1	1	0
t	J		Ø	0
١	1	O	ſ	0
	1	0	0	0
	0	1	(1
	0	1	•	0
	0	0	١	5
	0	D	0	(
	-	1		

2.3 Converting Logic Networks to Truth Functions or Boolean Expressions

Example: Exercise 5, p. 655



0 1 0 (0

Simplifying Canonical Form 2.4

We can use properties of Boolean algebra to simplify the canonical form, creating a much simpler logic network as a result.

Example: Practice 11, p. 645 (reprise)
$$f(x, x_{1}) = x_{1} \cdot x_{2}$$

$$f(x, x_{2}) = (x_{1} \cdot x_{2})$$

$$f(x, x_{2}) = (x_{2} \cdot x_{2})$$

Wouldn't it be nice if there were some systematic way of doing this? That's the subject matter of the next section! We'll see two different ways to simplify a cannonical sum of products.

An example: Adding Binary numbers 2.5

Half-Adders 2.5.1

Half-Adder: Adds two binary digits.

$$s = x_1'x_2 + x_1x_2'$$

$$c = x_1x_2$$

s is the result of an "XOR" operation (exclusive or) of the two inputs, whereas c is the product of the two inputs. Note, however, that the half-adder doesn't implement s in this way: instead,

$$s = (x_1 + x_2) \cdot (x_1 x_2)'$$

Questions:

Z X, X2+ X, X2 Rewrite

disit is

= X, X, + X, X, + X, X, + X2, X, = 0 + x, x2, + x2x, + 0 = x, x2 + x2x,

Full-Adder: Adds two digits plus the carry digit from the preceding step (which we can create out of two half-adders!).

• Given the preceding carry digit c_{i-1} , and binary digits x_i and y_i .

S = (x, +x2)(x1 + x2)

- We'll use a half-adder to add x_i to y_i , obtaining write digit σ and carry digit γ .
- Then use a half-adder to add the carry digit c_{i-1} to σ ; the write digit is s_i , and call the carry digit c.
- To get the carry digit c_i , compare the carry digits c and γ : if either gives a 1, then $c_i = 1$ (so it's an "or").

"Half Adder

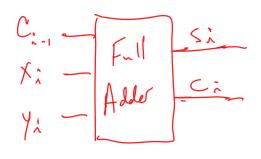
Let's derive all that from the truth functions, representing the sum

from the full-adder:

										_ X			
	c_{i-1}	x_i	y_i	c_i	s_i	8	5	5	<u>C</u>	C+1			
	0	0	0	0	0	٥	0	0	&	0			
	0	0	1	0	1	O	-1	I	0	0			
	0	1	0	0	1	P	1	1	8	0			
	0	1	1	1	0	$ \cdot $	O	Ô	0	1 .			
	1	0	0	0	1	0	٥	Ī	•	(
	1	0	1	1	0	0	1	6	t	1 1			
	1	1	0	1	0	0	(D	1	j			4-18
	1	1	1	1	1	Ţ	0		0	LL'		آئے	Alle
	-		~						-)	(5- 1	· ~
Ki Half ()													
								78	. —	- add	(V)	X	
								ľλ		·		V	

So the canonical sum of products forms of each function are

$$s_{i}(c_{i-1}, x_{i}, y_{i}) = c'_{i-1}x'_{i}y_{i} + c'_{i-1}x_{i}y'_{i} + c_{i-1}x'_{i}y'_{i} + c_{i-1}x_{i}y_{i} = c'_{i-1}(x'_{i}y_{i} + x_{i}y'_{i}) + c_{i-1}(x'_{i}y_{i} + x_{i}y'_{i})'$$



and

$$c_{i}(c_{i-1}, x_{i}, y_{i}) = \begin{cases} c'_{i-1}x_{i}y_{i} \\ + c_{i-1}x'_{i}y_{i} \\ + c_{i-1}x_{i}y'_{i} \\ + c_{i-1}x_{i}y'_{i} \end{cases}$$

$$= x_{i}y_{i} + c_{i-1}(x'_{i}y_{i} + x_{i}y'_{i})$$

We recognize these quantities in terms of half-adders:

- We recognize the write digit σ and the carry digit γ of the half-adder of x_i and y_i .
- Then s_i is just the write digit s of the half-adder of c_{i-1} and σ ;
- Meanwhile, c_i is the sum of γ and the carry digit c of the half-adder of c_{i-1} and σ .
- That is illustrated in this figure:

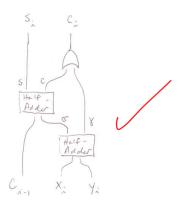


Figure 1: The full-adder takes input digits x_i and y_i , as well as the carry digit c_{i-1} from the previous step and computes write digit s_i and carry digit c_i . Then do it again!

Example: Practice 12, p. 650

