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Abstract

We now consider the logic associated with predicate wffs,
including a new set of derivation rules for demonstrating validity
(the analogue of tautology in the propositional calculus) – that
is, for proving theorems!

1 Derivation rules

• First of all, all the rules of propositional logic still hold. Whew!
Propositional wffs are simply boring, variable-less predicate wffs.

• Our author suggests the following “general plan of attack”:

– strip off the quantifiers

– work with the separate wffs

– insert quantifiers as necessary

Now, how may we legitimately do so? Consider the classic syllo-
gism:

a. (All) Humans are mortal.

b. Socrates is human.

Therefore Socrates is mortal.

The way we reason is that the rule “Humans are mortal” applies
to the specific example “Socrates”; hence the Socrates is mortal.
We might write this as

a. (∀x) (H(x) → M(x))

b. H(s)

Therefore M(s) – it seems so obvious! But how do we justify that
in a proof sequence?



• New rules for predicate logic: in the following, you should under-
stand by the symbol x in P (x) an expression with free variable
x, possibly containing other (quantified) variables: e.g.

P (x) ≡ (∀y)(∃z)Q(x, y, z) (1)

– Universal Instantiation: from (∀x)P (x) deduce P (t).

Caveat: t must not already appear as a variable in the ex-
pression for P (x): in the equation above, (1), it would not
do to deduce P (y) or P (z), as those variables appear in the
expression (in a quantified fashion) already.

Example: Practice 22, p. 60. Prove:

(∀x)[P (x) → R(x)] ∧ [R(y)]′ → [P (y)]′

– Existential Instantiation: from (∃x)P (x) deduce P (t).

Caveat: t must be introduced for the first time (so do these
early in proofs). You can do a universal instantiation which
also uses t after an existential instantiation with t, but not
vice versa (e.g. Example 27, p. 60).

Example: Ex. #12, p. 70 (start). Prove that the following
wff is a valid argument:

(∀x)P (x) ∧ (∃x)Q(x) → (∃x)[P (x) ∧ Q(x)]



– Universal Generalization: from P (x) deduce (∀x)P (x).

Caveats:

∗ P (x) hasn’t been deduced by existential instantiation
from any hypothesis in which x was free (p. 63, top),
and

∗ P (x) hasn’t been deduced by existential instantiation
from another wff in which x was free. For example,
suppose that we wanted to prove, in the domain of the
integers, that:

(∀x)(∃y)(x + y = 0) → (∀x)(x + a = 0)

1.(∀x)(∃y)(x + y = 0) hyp

2.(∃y)(x + y = 0) 1, ui

3.x + a = 0 2, ei
4.(∀x)(x + a = 0) 3, incorrect ug

Example: Ex. #20, p. 71. Prove:

(∀x)[P (x) → Q(x)] → [(∀x)P (x) → (∀x)Q(x)]

(Note: the deduction method still applies, of course.)

– Existential Generalization: from P (a) deduce (∃x)P (x).

Caveat: x must not appear in P (a).

Example: Ex. #12, p. 70 (finish).



2 Some results/notes

– Note that

(∀y)[P (x) → Q(x, y)] ⇐⇒ [P (x) → (∀y)Q(x, y)]

as shown on pp. 64, and

(∃y)[P (x) → Q(x, y)] ⇐⇒ [P (x) → (∃y)Q(x, y)]

as Gersting suggests (bottom, p. 64). How would we demon-
strate that? (See “temporary hypothesis”, below.)

This means that we can “pass over” predicates outside our
own scope, or include them within our own scope – provided
they do not conflict with other similarly named variables.
This is similar to what we do with summation notation,
when, for example, we can write

m∑

i=1

n∑

j=1

A(i)B(j) =
m∑

i=1

A(i)
n∑

j=1

B(j)

– Note also the method of proof: the author introduces a
temporary hypothesis. If you think about the deduc-
tion method, it takes a conclusion which is an implication
and rewrites it so that the implication disappears (the an-
tecedent becomes one of the hypotheses). Similarly, we can
take an hypothesis (in this case, one which we introduce) and
turn a conclusion into an implication. This is the deduction
method backwards! That is, suppose that one starts with
P (x) as true. Suppose further that if you add a “temporary
hypothesis” Q(x) then you can deduce R(x):

P (x) ∧ Q(x) → R(x)

Using the deduction method backwards, we conclude that

P (x) → (Q(x) → R(x))

Since P (x) implies the implication Q(x) → R(x), we can
add it as an hypothesis to our argument:

P (x) ∧ (Q(x) → R(x))

Think about it....

Here’s a simple example of how it works. Suppose that I am
the king. Now suppose that, in the same kingdom, there is
a queen (ruling in the kingdom). Then she must be my wife,
by the laws of royalty. Hence, to the proposition “There is
a king” we could attach the hypothesis “If there is a queen



(ruling in the kingdom), then the queen is the king’s wife.”
This additional hypothesis is true as long as there is a king
(which is hypothesized). We’ve got the following chain of
events:

K hypothesis

Q temp. hyp.

W (Q, K) laws of royalty

Q → W (Q, K) temp. hyp. discharged

Note that this “discharged” hypothesis is only true in the
context of the hypotheses already assumed

K ∧ (Q → W (Q, K))

(if there were no king, it might be that there is a queen who
is not the king’s wife – e.g. Queen Elizabeth I).

Look at the three proofs using a temporary hypothesis (Ex-
amples #31, and 32(a,b)). Notice how the introduction of
the temporary hypothesis ends with an implication, which
is then useful for the continuation of the proof.

Example: Practice 25, p. 65: Prove:

(∀x)[(B(x) ∨ C(x)) → A(x)] → (∀x)[B(x) → A(x)]

So now, how would we demonstrate that

(∃y)[P (x) → Q(x, y)] ⇐⇒ [P (x) → (∃y)Q(x, y)]

(by the way, I really shudder when I see this one – this is a
technical argument, that shows that it’s possible to have ∃

and → together....

Example: #39, p. 72 Every computer science stu-

dent works harder than somebody, and everyone who works
harder than any other person gets less sleep than that per-
son. Maria is a computer science student. Therefore, Maria
gets less sleep than someone else. C(x), W (x, y), S(x, y), m


