Lab 12

MAT 229, Spring 2021

Today's lab is primarily about the ratio and the root tests for the convergence of a series.

Your job: to explore these examples of uses (or **attempted** uses) of these tests.

Review

Absolute convergence test

If $\sum_{k=0}^{\infty} b_k | converges$ then $\sum_{k=0}^{\infty} b_k$ converges.

Root and Ratio tests:

Given any series $\sum\limits_{k}^{\infty}b_{k}$: **evaluate the limit** of either/or

• the ratio of successive terms (ratio test), ignoring any signs:

$$L = \lim_{k \to \infty} \left| \frac{b_{k+1}}{b_k} \right|$$

• the k^{th} root, ignoring any signs (**root** test), of the k^{th} term:

$$L = \lim_{k \to \infty} \sqrt[k]{|b_k|}.$$

Then

- If L < 1, then $\sum_{k}^{\infty} b_k$ converges.
- If L > 1, then $\sum_{k}^{\infty} b_k$ diverges.
- If L = 1, then you must use another convergence test. The series doesn't compare to a geometric series.

Exercises to submit

1. Let's start easy: suppose that you're asked to consider the convergence of a geometric series:

$$\sum_{k=0}^{\infty} a r^k.$$

■ *a*. Try the root test

 $\begin{array}{l} \ln[124] := b[k_{-}] := a \, r^{k} \\ \text{Limit} \left[Abs[b[k]]^{(1/k)}, \, k \rightarrow \text{Infinity, Assumptions} \rightarrow r \in \text{Reals} \right] \end{array}$

Out[125] = Abs[r]

■ b. Try the ratio test

$$In[126]:= b[k_] := ar^k$$

$$Limit[Abs[b[k+1]/b[k]], k \rightarrow Infinity]$$

Out[127]= Abs[r]

KAD ON KATO WAS TO KADA MANANTAN

• c. State your conclusion. (What about the cases "on the boundary"?)

The series will converge if |r|<1; it diverges if r=1 or r=-1 (unless a=0...:)

■ d. Was one test easier than the other?

The ratio test was easier.

2. Still easy, but maybe for the wrong reason: suppose that you're asked to consider the convergence of the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$. We know that this is conditionally convergent (by the AST), but not absolutely convergent (since the harmonic series diverges). What do the root and ratio tests tell us?

■ a. Try the root test (you need to actually calculate the limit).

$$\label{eq:local_local_local_local_local} $$ \ln[128] := b[k_{-}] := 1/k$$ $$ Limit[Abs[b[k]]^{(1/k)}, k \to Infinity, Assumptions \to r \in Reals] $$$$

Out[129]= 1

■ b. Try the ratio test (you need to actually calculate the limit).

In[130]:= Limit[Abs[b[k+1]/b[k]], k
$$\rightarrow$$
 Infinity]

Out[130]= 1

c. What can you conclude from these tests?

We can't conclude anything!

d. Was one test easier than the other?

The ratio test was easier.

- 3. Still easy, but again for the wrong reason: suppose that you're asked to consider the convergence of the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$. We know that this is absolutely convergent (as a positive p-series). What do the root and ratio tests tell us?
 - a. Try the root test (you need to actually calculate the limit).

$$ln[131]:= b[k_] := 1/k^2$$

 $\label{eq:limit_abs_balance} \mbox{Limit} \big[\mbox{Abs[b[k]] $^{(1/k)}$, $k \rightarrow \mbox{Infinity, Assumptions} \rightarrow r \in \mbox{Reals} \big]$

Out[132]= 1

■ b. Try the ratio test (you need to actually calculate the limit).

12 My the ratio test (you need to actually calculate the limit).

12 March | (14 Minute) | (14 Minut

Ling (Will = 1/Will =

```
ln[133]:= Limit[Abs[b[k+1]/b[k]], k \rightarrow Infinity]
Out[133]= 1
```

c. What can you conclude from these tests?

We can't conclude anything!

d. Was one test easier than the other?

The ratio test was easier.

- 4. As we will soon see there are series representation for many well-known functions. However, if the series do not converge, the series cannot represent the function.
 - $a. e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, for any x where the series converges.
 - Determine if this series converges or not if x = -1. If it does use a partial sum, along with an appropriate error estimate, to approximate e^{-1} with error less than 0.0001.

```
ln[223]:= (* In the case of x=-1, we have an alternating series,
     which converges by the AST. We need the first neglected term to be < 0.0001. *)
     TableForm[Table[\{k, 1/(k+1)! - 0.0001\}, \{k, 0, 10\}]]
      enn = 7;
      partial = N[Sum[(-1)^k/k!, \{k, 0, enn\}]];
     true = N[E^{(-1)}];
      error = Abs[partial - true];
     TableForm[
       Transpose[{{true, partial, enn, error}}]
       , TableHeadings → {{"True", "Partial", "No. of terms", "Abs. Error"}}
                                       ]
Out[223]//TableForm=
           0.9999
     0
           0.4999
      1
      2
           0.166567
      3
           0.0415667
      4
           0.00823333
      5
           0.00128889
      6
           0.0000984127
      7
            -0.0000751984
      8
            -0.0000972443
      9
           -0.0000997244
           -0.0000999749
      True
                     0.367879
      Partial
                     0.367857
      No. of terms
                     0.0000222983
      Abs. Error
```

• Determine if this series converges or not if x = -2. If it does use a partial sum, along with an appropriate error estimate, to approximate e^{-2} with error less than 0.0001.

```
ln[217]:= (* In the case of x=-2, we have an alternating series,
       which converges by the AST. We need the first neglected term to be < 0.0001. *)
       TableForm[Table[\{k, 2^{(k+1)} / (k+1) ! -0.0001\}, \{k, 0, 10\}]]
       enn = 10;
       partial = N[Sum[(-2)^k/k!, \{k, 0, enn\}]];
       true = N[E^{(-2)}];
       error = Abs[partial - true];
       TableForm[
        Transpose[{{true, partial, enn, error}}]
        , TableHeadings → {{"True", "Partial", "No. of terms", "Abs. Error"}}
       ]
Out[217]//TableForm=
       0
             1.9999
       1
             1.9999
       2
             1.33323
       3
             0.666567
             0.00131093
       9
             0.000182187
       10
               0.0000486933
Out[222]//TableForm=
                          0.135335
       True
       Partial
                          0.135379
       No. of terms
                          10
       Abs. Error
                         0.0000439055
           ■ b. \ln(x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(x-1)^k}{k}, for any x where the series converges.
```

■ Determine if this series converges or not if x = 0.5. If it does, use a partial sum, chosen using an appropriate error estimate, to approximate $\ln(0.5)$ with error less than 0.0001.

If
$$x = \frac{1}{2}$$
, we hope that
$$|x|^{2} = \frac{1}{2} \left(-1\right)^{k+1} \left(\frac{1}{2}e^{-1}\right)^{k}$$

$$= \frac{1}{2} \left(-1\right)^{k+1} \left(-\frac{1}{2}e^{-1}\right)^{k}$$

$$= \frac{1}{2} \left(-\frac{1}{2}e^{-1}\right)^{k} \cdot \frac{1}{2} \cdot \frac{1}{$$

 $\ln[203]$:= (* We can choose the comparison with the geometric series $(1/2)^k$, and choose k such that the remainder terms of that series is < 0.0001. $\left(\frac{1}{2}\right)^{2} = 0.0001$ $\left(\frac{1}{2}\right)^{2} = 0.0001$ $\left(\frac{1}{2}\right)^{2} = 0.0001$ Clear[n] $soln = Solve[(1/2)^{(n+1)}/(1-1/2) == 0.0001, n];$ enn = n /. soln[[1]]; enn = Ceiling[enn] partial = $N[Sum[(-1)^{(k+1)}(-1/2)^k]/k, \{k, 1, enn\}]];$ true = N[Log[0.5]];

TableForm[Transpose[{{true, partial, enn, error}}] , TableHeadings → {{"True", "Partial", "No. of terms", "Abs. Error"}}]

Out[206]= 14

```
Out[210]//TableForm=
       True
                            -0.693147
       Partial
                            -0.693143
       No. of terms
                            14
                           3.84047 \times 10^{-6}
       Abs. Error
```

error = Abs[partial - true];

Determine if this series converges or not if x = 2. If it does, use a partial sum, chosen using an appropriate error estimate, to approximate ln(2) with error less than 0.0001.

```
ln[191]:= (* In the case of x=2, we have an alternating series,
      which converges by the AST. We need the first neglected term to be < 0.0001. *)
      (* 1/(k+1)=1/10000 when k=9999, so take 10000 terms: *)
      partial = N[Sum[(-1)^{(k+1)/k}, \{k, 1, 10000\}]];
      true = N[Log[2]];
      error = Abs[partial - true];
      TableForm[
       Transpose[{{true, partial, error}}]
       , TableHeadings → {{"True", "Partial", "Abs. Error"}}
Out[194]//TableForm=
```

True 0.693147 0.693097 Partial 0.0000499975 Abs. Error