
Lab 7: Student Assignment
Week 7, February 22

MAT 229, Spring 2021

Numerical Integration Examples
This lab begins by asking you to evaluate some “initialization code” provided by Prof. Al Hibbard.
Under the “Evaluation Tab” above you’ll see “Evaluate Initialization Cells”: select that, and allow 
initialization. When you’re done, come back up here to the beginning.

Numerical Integration Code: thanks to Al Hibbard  -- 
HibbardA@central.edu 

1. Improper Integral example: integrable function with a 
vertical asymptote

One of our questions from this week’s material asks “What makes ∫0
1 1

x

dx an improper integral? Does 

it converge or not?”
It’s improper because of the vertical asymptote at the left endpoint.
It does converge, because it blows up “slowly enough” that there is actually a finite amount of area 
under the curve, even as the curve itself heads to infinity. 

1. Define f(x)= 1

x

, a and b as the endpoints. 

2. Use the right endpoint method to approximate this integral with n=100, using Mathematica’s Sum 
command. Here it a picture of the situation with n=8: 
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3. Use the midpoint method to approximate this integral with n=100, using Mathematica’s Sum 
command. Here it a picture of the situation with n=8: 
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4. Why are you unable to use any other of our methods for this definite integral? 

5. Why are you unable to carry out any error analysis using our error formula for midpoint?

6. Nonetheless, you can compute this integral analytically, and so compare the absolute error of both 
the midpoint and right endpoint methods.

2. Numerical Integration with data: 
An Exercise in Modeling Human Temperature

The Data

The following figure is reproduced from the Book “La Chaleur Animale” (Animal Heat), 1889, by Charles 
Richet (Nobel Prize in Medicine, 1913). It represents the daily rectal temperatures of an individual 
human (the curve “determined by the very exact measurements of Mr. Jurgensen... clearly showing the 
daily oscillations”  in temperature). 
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http://www.obrasraras.usp.br/jspui/bitstream/123456789/509/2/S-47216_%20RICHET_La_chaleur_animale_1889.pdf


I digitized the data (pulled it off that figure) as follows (and you might check me!). The following com-
mands define the data:

In[ ]:= temps = 37 + (* degrees celsius *)

.1 {0, -1, -2, -3, -3, -3, -3, -2, -2, 0, 2, 3, 3, 4, 4, 4, 5, 5, 5, 4, 4, 3, 2, 1}

times = {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5,

16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5};(* half hours from midnight *)

data = Transpose[{times, temps}]

The model

A model, obtained by non-linear regression is

37.125 - 0.404182 Sin 1
12

π (1.06355 + t)

and a plot of the data and the model will look like this: 
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http://www.obrasraras.usp.br/jspui/bitstream/123456789/509/2/S-47216_%20RICHET_La_chaleur_animale_1889.pdf
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1. Define nlm(t) by the formula above (nlm stands for non-linear model).

If you defined nlm(t) properly, then you’ll generate the graph above with this command:

In[ ]:= Show[ListPlot[data], Plot[nlm[t], {t, 0, 24}],

PlotLabel → "Human Temperature Across a Day", Frame → True]

The mean obtained by the non-linear regression model is 37.125 (in degrees Celsius). 
a. What is this temperature in degrees Fahrenheit? 
b. At what time of day is the temperature highest, according to the model? 
c. At what time does the body temperature equal its mean?
d. How much does the temperature vary across the day (in degrees C)?

2. Use the original data and the Trapezoidal Rule to compute the average value of temperature. How 
does it compare to the average obtained by the model? 

3. An example problem from statistics:
This function cannot be evaluated analytically by any of our methods -- the famous “bell curve”, so 
essential for statistics:

In[ ]:= f[x_] := E^-x2

Plot[f[x], {x, -2, 2}]

Out[ ]=

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

4     Lab7-student.nb



Our objective is to compute the integral A = ∫-1
1
f(x) dx.

1. Compute the integral  ∫0
1
f(x) dx using Mathematica, and call this value true (Even though 

Mathematica is also doing a numerical approximation!). 

2. Why can we focus all of our energy and attention on the interval [0,1]?

3. Graph the absolute values of the second and fourth derivatives, and obtain estimates for the error 
constants K for midpoint, trapezoidal and Simpson’s rules.

4. Given the following estimates for midpoint (M8), trapezoidal (T8), and Simpson’s (S16) rules. 

In[ ]:= NMidpointApprox[f[x], {x, 0, 1}, 8]

NTrapezoidApprox[f[x], {x, 0, 1}, 8]

NSimpsonApprox[f[x], {x, 0, 1}, 16]

4.1. Verify that the actual absolute errors of each of the three methods satisfy the error bounds associated 
with the given numbers of subintervals on [0,1].

4.2. Verify that Simpson’s approximation is the appropriate average of the midpoint and trapezoidal 
approximations.

5. How do we extend both the approximations and the error estimates to A, over the entire interval 
[-1,1]?

4. Error Analysis: you compute the number of subdivisions 
needed.

Compute the integral  ∫0
4
x

3
x

2 + 9 dx 

1. analytically.

2. Determine what the minimal value of n should be for the midpoint rule to have accuracy within 
0.0001, and compute the midpoint estimate with that value of n. Verify that the absolute error of 
your estimate is within the error bound.

3. Determine what the minimal value of n should be for Simpson’s rule to have accuracy within 0.0001, 
and compute the Simpson’s rule  estimate with that value of n. Verify that the absolute error of your 
estimate is within the error bound.
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