Huygens’ Cycloidal
Clock

Galileo conjectured the (near-) isochronous property of
the pendulum but relied on water clocks to measure
time. The first pendulum clock was invented in 1656
by the great mathematician and physicist Huygens. Not
satisfied with the accuracy of the pendulum clock,
Huygens sought to devise a pendulum with period
strictly independent of the amplitude. The path of the
bob of such a pendulum is called a tautochrone.
Huygens proved that the cycloid is a tautochrone, and
that its evolute is a congruent cycloid. These insights
provided the theoretical basis for clocks (built around
1700) in which cycloidal jaws forced the bob to move
along a cycloidal path.

While the practical value of Huygens’ insights proved
insignificant (pendulum friction and air resistance
overshadow the improvement resulting from replacing
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an ordinary pendulum with a cycloidal pendulum), his
reasoning in the proof that the cycloid is the only
tautochrone “goes far beyond the differential and integral
calculus . . .

What follows are three computations, marked (a), (b),
and (c), respectively. (a) is a calculus-based proof of the
tautochrone property of the cycloid. (b) is Huygens’
proof of this property. (c) is an application of the setup
in (b).

Huygens’ proof (b) is brilliant but beyond the inventive
capacity of ordinary mortals. The calculus proof (a)
calls for a measure of skill in the handling of integrals
but is essentially routine. A comparison of the two

)/ — G ~
A " -
\
C
i) AN |
b\ “ Ir X
OkS P "
|< 27r 2
Genesis of the cycloid
The evolute of a cycloid is a cycloid
7
™S oM X /
3 ;//7
4
% % \ ;
N\ /
~N
~

The cycloidal clock “in the raw”
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The cycloidal clock “in finished form™
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solutions is a dramatic illustration of the “routinizing”
power of the calculus.

(a) How to show that a cycloid is a tautochrone by the
use of calculus
For uniform motion (that is, motion with
constant velocity), the time of travel t, the distance
travelled s, and the velocity v are related by
s
=y
Hence
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The integral calculus generalizes this to nonuniform
motion. If the velocity v depends on the distance s
travelled, then the formula for the time t of travel is

ds
® t=Jv,

the limits of integration being the initial and final
distances, respectively.

Suppose the motion is along a curve given
parametrically as
x=x(u),y=y()

Then
ds=Vx’2+y’2 du
where ’ denotes differentiation with respect to the

parameter. Setting this into the integral (I) for the time
of travel gives

’2 ,2
a’ t=f —L“‘;'au.

To evaluate this integral we need to know v as a
function of the parameter. To do that we apply the law
of conservation of energy. If a unit mass particle is at
rest at the point
M = (X0,Yo0) = ( x(uo) , ¥(uo) )
(see Figure 1),

then its kinetic energy; 2 atthe point N = (x,y) is

equal to the loss of potential energy between M and N.
This loss is g(y - Yo)s SO

() % v2 (u) = g(y-Yo)

Now take for the curve a cycloid, given parametrically
by

x =r (u - sin u),
Then

x’ =1 (1 - cos u),

y=r(1-cos u).

y =rsinu.
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Figure 1
Hence

Vx2+y’2 = rN2-2cosu ,
and, from (2),

v =V 2gr(cos ug - cos u)
Setting these into (1)’ gives for the time of travel
between M and N
1-cosu

t-‘\, f\/ du
COS Uy - cos u

Using the identities

u
1-cosu =2 sin? 2
cosu=2cos’u -1,

we can rewrite the above as

Slﬂ =
'\’ du.
'\/cos2 - cos? l;

Now take N to be the point at the bottom of the
cycloid. This corresponds to the parameter value u = T,
so the time taken to reach the bottom starting at M is

i

sinll
=‘\/ é 2 du.
2Uo _ 2 U
'\/cos ) cos >

Up
u . . :
Introduce cos-2—° as a new variable of integration. Then

i u T i
the limits are py = cos 2 andcosz=0 , so the time

2 2
of travel is given by the integral

Po .
t=2"’£ __(!’_=n r
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This is a remarkable result! It shows that the time it
takes for the particle to get from the release point M to
the lowest point K on the cycloid is independent of M,
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that is, the cycloid is a tautochrone. Q.E.D.
(b) How Huygens showed (more than 300 Years ago)
that the cycloid is a tautochrone

If two particles are released from the same height and
move along two curves with velocities whose vertical
components are the same, then they will reach ground
level at the same time.

Huygens’ idea is to replace the gravity-induced motion
of a particle on a cycloid with a motion of a particle on
a circle such that the vertical components of the
velocities of the two particles are the same. The details
follow.
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Figure 2

Consider the cycloid generated by the circle with
diameter AB (Figure 2). The particle on the cycloid is
released at C (Figure 2 ). N is a “typical” position of
this particle. The corresponding particle moves on the
semicircle DPA with diameter DA, where D is at the
same height as C and A is the lowest point on the
cycloid. P is a “typical” position of that particle. We
recall that our aim is to impart to the particle on the
semicircle a velocity whose vertical component is equal
to the vertical component of the gravity-induced
velocity of the particle on the cycloid.

We have: |V 1 = \12g DL. A (nonobvious!)

geometric fact of fundamental importance is that the
tangent to the cycloid at N is parallel to the chord AM
(this can be easily deduced by calculus from the
parametric equations of the cycloid). This being so, the

vertical component of v, is

V2g DL - sin Z AML, that is, V2g - DL %

Now we replace AM with quantities in the semicircle
DPA. Since LP?2 = DL - AL implies that

= VDL - AL , and AM? = AL - AB implies that
AM = VAL - VAB , it follows that the magnitude of
the vertical component of v, is
VagoL AL AL > VDL - AL - VAL
VAL VA

=/ 2L
-'\/ABLP.
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The vertical component of the (as yet undetermined)
velocity W is IVl - LP/— (see Figure 3 ). Since

- . Lp_. [z .
we insist on the equality 2|7 | - AD Ap LP it

follows that IVl = % \ 2g/AB. But then the time it

takes the particle moving on the semicircle DPA to get
from D to A is
AD

V2g/AB - A2_D

independent of the elevation of D. It follows that the
time of descent of the particle moving under the action
of gravity from C to A along the cycloidal arc CNA is
independent of the elevation of C , that is, that the
cycloid is a tautochrone and its amplitude-independent

quarter-period is 7/V2g/AB. (N.B. Putting AB = 2r ,
where r is the radius of the circle generating the cycloid
in our first computation, we see that the quarter-period

value obtained by Huygens is also n\/r_/g ;

T =/ 2g/AB , which is

Historical note. Since ® was introduced in the 18th
century (by Euler) it could not have been used by
Huygens. Huygens’ result was that

CNA-time DPA-time

free-fall BA-time ~_ free-fall BA-time

_ _length of DPA
vl V2AB/g

length of DPA
£2\2g/AB \2ABlg

length of DPA
AD ’
This shows that the CNA-time, that is the time of
descent of the particle on the cycloid from C to A , is
independent of C. Q.ED.
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(c) An application of the setup in (b)

Let us introduce yet another particle into the Huygens
scheme. This particle will be the projection—one
might say the shadow—on AD of the particle traversing
the semicircle DPA. The reason for our interest in this
particle is that its velocity is directed vertically and
equal to the vertical components of the velocities of the
two previous particles. Smce the speed of the panicle

on the semicircle DPA is AD V 2g/AB = Al ‘/_7 2

its angular velocity is ® = \/—g_/r . As we vary the
release point C on the cycloid we obtain a family of
semicircles DPA traversed with angular velocity @. To
each constant-speed motion on a semicircle of the
family there corresponds a “shadow-motion” along the
corresponding diameter DA (see Figure 2). When the

shadow particle is at L its speed is Vg/r - LP = oLP.
The shadow is executing a simple harmonic motion
with half-period m/@. If we introduce a coordinate
system with center at the midpoint of DA and x-axis
determined by AD, then the half-period of the shadow-
motion is

P
pi e where AD/2. The
_‘J;mLP o B xz ’ P =
-p
1 1 dx
IS e
equality - P e implies that
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p
J‘-L = 7, regardless of the (positive) value of
_p\/pz - x2
p. We have evaluated a nontrivial integral by giving it
a physical interpretation!

While it is true that
f—(-k— = [arcsinl]p =7,
‘\,pz - x2 p -p
P

it is nice to be able to predict this by interpreting

g |~

P
dx
— i -i 1 A
fm as the (amplitude-independent!) half:

period of a simple harmonic motion with frequency %
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