Integral Test

MAT 229, Spring 2021

Week 10

Supporting materials

If you wish to get a different perspective on the notes below, try either of the following textbook sections.

- Stewart's Calculus
 - Section 11.3 The integral test and estimates of sums
- Boelkins/Austin/Schlicker's <u>Active Calculus</u>

Section 8.3: Series of real numbers

Code used below (thanks to Al Hibbard)

Review

Question

What are the first four partial sums for $\sum_{k=1}^{\infty} \frac{1}{k^2}$? (<u>Video</u>)

Questions

Which of the following converge? To what?

- $\sum_{k=0}^{\infty} 4 \left(\frac{3}{2}\right)^k$
- $\sum_{k=0}^{\infty} 5 \left(-\frac{2}{3}\right)^k$

(Video)

Question

How do I know that $\sum_{k=1}^{\infty} \sin(k)$ diverges? (<u>Video</u>)

Series Tails

■ Finite sums have finite values.

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_{n-1} + a_n$$

■ Infinite sums can be written as the sum of its first few terms and all the other terms

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots + a_{n-1} + a_n + a_{n+1} + a_{n+2} + a_{n+3} + \dots$$
$$= \sum_{k=1}^{n} a_k + \sum_{k=n+1}^{\infty} a_k$$

We say $\sum_{k=n+1}^{\infty} a_k$ is a *tail* of the series.

Series convergence

Because the first few terms have a finite sum, the whole series converges if and only if each tail converges.

Integral Test

Questions

Consider the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$. The summands (terms) of this series are 1, $\frac{1}{4}$, $\frac{1}{9}$,

- You have computed the first few partial sums for this series. How do the partial sums compare, S₁ with S_2 , S_2 with S_3 , etc.?
- Is this monotonic or not?

(Video)

Questions

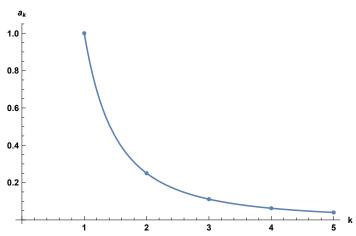
Suppose the summands a_1 , a_2 , a_3 , ... are all positive.

- Are the partial sums $S_n = \sum_{k=1}^n a_k$ monotonic?
- If we can find an upper bound for the sequence S_1 , S_2 , S_3 , ... what do we now about the convergence of $\sum_{k=1}^{\infty} a_k$?

(Video)

Questions

Let $a_k = \frac{1}{k^2}$. The plot of these terms is

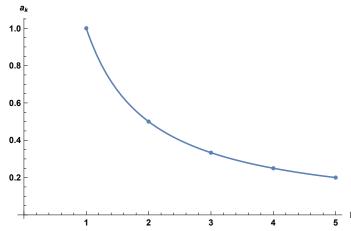


- Approximate $\int_{1}^{5} \frac{1}{x^2} dx$ using n = 4 and the right hand endpoints.
- Is that an underestimate, overestimate, or can't tell?
- Approximate $\int_{1}^{5} \frac{1}{x^2} dx$ using n = 4 and the left hand endpoints.
- How is that approximation related to $\sum_{k=2}^{5} \frac{1}{k^2}$?
- What is $\int_{1}^{\infty} \frac{1}{x^2} dx$? What can you conclude about $\sum_{k=1}^{\infty} \frac{1}{k^2}$?

(Video)

Questions

Let $a_k = \frac{1}{k}$. The plot of these terms is



- Approximate $\int_{1}^{5} \frac{1}{x} dx$ using n = 4 and the *left* hand endpoints.
- Is that an underestimate, overestimate, or can't tell?
- How is that approximation related to $\sum_{k=1}^{4} \frac{1}{k}$?
- What is $\int_{1}^{\infty} \frac{1}{x} dx$? What can you conclude about $\sum_{k=1}^{\infty} \frac{1}{k}$?

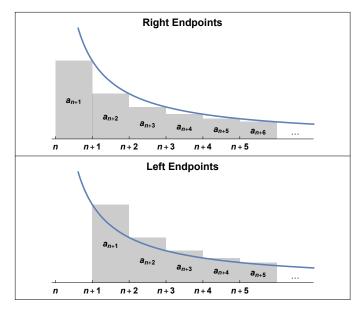
(Video)

Integral test

Given the infinite series $\sum_{k=n}^{\infty} a_k$, if there is an integrable function f(x) such that

- $f(k) = a_k$ for $k \ge n$,
- $f(x) \ge 0$ for $x \ge n$,
- f(x) is a decreasing function for $x \ge n$.

then the infinite series $\sum_{k=n}^{\infty} a_k$ converges if and only if the improper integral $\int_{n}^{\infty} f(x) dx$ converges.



$$\sum_{k=n+1}^{\infty} a_k = \mathsf{LRR} > \int_{n+1}^{\infty} f(x) \, dx > \mathsf{RRR} = \sum_{k=n+2}^{\infty} a_k$$

Question

Use the integral test to determine if $\sum_{k=1}^{\infty} e^{-k}$ converges or not.

(Video)

Question

For which values of p does the infinite series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converge and for which values of p does it diverge?

(Video)

Error estimate

Once you know a series converges, you can approximate it with a partial sum.

$$\sum_{k=1}^{\infty} a_k \approx \sum_{k=1}^{n} a_k$$

The absolute error in this approximation is

error

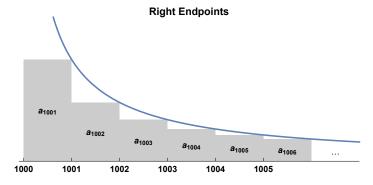
= | exact – approximation |
= |
$$\sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k$$
 |
= | $(a_1 + a_2 + a_3 + ... + a_n + a_{n+1} + a_{n+2} + ...) - (a_1 + a_2 + a_3 + ... + a_n)$ |
= | $a_{n+1} + a_{n+2} + ...$ |
= $\left| \sum_{k=n+1}^{\infty} a_k \right|$

The error is just a tail of the series.

Integral test error estimate

If we know a series $\sum_{k=1}^{\infty} a_k$ converges due to the integral test with function f(x), then the error in approximating $\sum_{k=1}^{\infty} a_k$ with the partial sum $\sum_{k=1}^{n} a_k$ is

$$\sum_{k=n+1}^{\infty} a_k \le \int_{n}^{\infty} f(x) \, dx$$



Questions

Consider the series $\sum_{k=1}^{\infty} \frac{1}{k^3}$. We know this converges by the integral test.

- What is the error in approximating $\sum_{k=1}^{\infty} \frac{1}{k^3}$ with $\sum_{k=1}^{5} \frac{1}{k^3}$?
- How should I choose n to approximate $\sum_{k=1}^{\infty} \frac{1}{k^3}$ with $\sum_{k=1}^{n} \frac{1}{k^3}$ so that the error is no more than 0.0001 (Video)

Questions

- Does the series $\sum_{k=0}^{\infty} \frac{1}{k^2+1}$ converge or diverge? If it converges, approximate it with a partial sum with error less than 0.001. (Video)
- Does the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{L_k}}$ converge or diverge? If it converges, approximate it with a partial sum with error less than 0.001. (Video)

Homework

■ IMath homework on the integral test.