Cross Product

MAT 229, Spring 2021

Week 16

Supporting materials

If you wish to get a different perspective on the notes below, try either of the following textbook sections.

- Stewart's Calculus
 - Section 12.4: Cross product
- Boelkins/Austin/Schlicker's Active Multivariable Calculus

Section 9.4: The cross product

Review

Questions

- What are the components of the vector that points from location (1, 0, -2) to location (2, 4, 3)?
- What is a unit vector that points in that same direction?

(Video)

Questions

- What is the geometric significance of scalar multiplication? (Video)
- What is the geometric significance of vector addition? (Video)
- What is the geometric significance of vector subtraction? (<u>Video</u>)
- What is the geometric significance of the dot product? (<u>Video</u>)

Cross product definition

The *dot product* is a multiplication-like operation between two vectors (two 2D vectors or two 3D vectors -- and beyond!) that gives a scalar value.

The *cross product* is a multiplication-like operation between two 3D that gives a vector value. **The cross product is only defined for 3D vectors.**

Geometric definition

The cross product of 3D vectors \vec{u} and \vec{v} is denoted $\vec{u} \times \vec{v}$.

■ The magnitude of $\overrightarrow{u} \times \overrightarrow{v}$ is given by

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$$

where θ is the smaller of the two angles between vectors \vec{u} and \vec{v} .

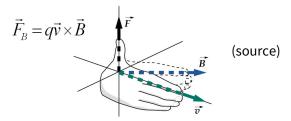
■ The direction of $\vec{u} \times \vec{v}$ is perpendicular to both \vec{u} and \vec{v} . There are two such directions. Choose the one that satisfies the right-hand rule.

Right-hand rule

To determine the direction of $\vec{u} \times \vec{v}$ from the two possible directions, using the fingers on your right

- Point your index finger in the direction of \vec{u} .
- Sweep that finger towards the direction of \vec{v} . Your thumb will point in the correct direction of $\vec{u} \times \vec{v}$.

Right Hand Rule: Cross Product



Magnetic force is a cross product. Torque is a cross product. There are lots of cross products in physics!



Questions

Let $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, and $\vec{k} = \langle 0, 0, 1 \rangle$. Use the above geometric definition to determine the following cross products.

- What is $\overrightarrow{i} \times \overrightarrow{j}$?
- What is $\vec{i} \times \vec{k}$?
- What is $\overrightarrow{i} \times \overrightarrow{k}$?

(Video)

Question

Are $\overrightarrow{u} \times \overrightarrow{v}$ and $\overrightarrow{v} \times \overrightarrow{u}$ the same? (<u>Video</u>)

Component definition

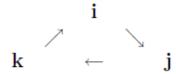
If
$$\vec{u} = \langle u_1, u_2, u_3 \rangle$$
 and $\vec{v} = \langle v_1, v_2, v_3 \rangle$, then $\vec{u} \times \vec{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$.

Notes:

- The first component of the cross product consists of the second and third components of the given two vectors.
- The second component of the cross product consists of the first and third components of the given two vectors.
- The third component of the cross product consists of the first and second components of the given two vectors.

■ If we check the **permutations** of the indices, then 123, 231, and 312 give rise to positive contributions, while 321, 213, and 132 give rise to negative contributions.

Since I hate memorizing stuff like all that above, I just think in terms of components, and the three basis vectors of our Cartesian coordinate system:



$$\vec{u} \times \vec{v} = \left(u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k} \right) \times \left(v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k} \right) ?$$

$$= \left(u_2 v_3 - u_3 v_2 \right) \vec{i} + \left(u_3 v_1 - u_1 v_3 \right) \vec{j} + \left(u_1 v_2 - u_2 v_1 \right) \vec{k}$$

Questions

Let $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, and $\vec{k} = \langle 0, 0, 1 \rangle$. Use the above component definition to determine the following cross products. (Compare with the results using the geometric definition.)

- What is $\overrightarrow{i} \times \overrightarrow{j}$?
- What is $\vec{i} \times \vec{k}$?
- What is $\vec{j} \times \vec{k}$?

Question

What is a vector that is perpendicular to both $\vec{u} = \langle 2, -1, 3 \rangle$ and $\vec{v} = \langle 1, 2, 1 \rangle$? (Video)

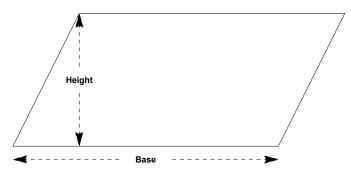
Cross product geometric properties

The magnitude of $\vec{u} \times \vec{v}$ is given by

$$\begin{vmatrix} \vec{u} \times \vec{v} \end{vmatrix} = \begin{vmatrix} \vec{u} \end{vmatrix} \begin{vmatrix} \vec{v} \end{vmatrix} \sin(\theta)$$

where θ is the smaller of the two angles between vectors \vec{u} and \vec{v} .

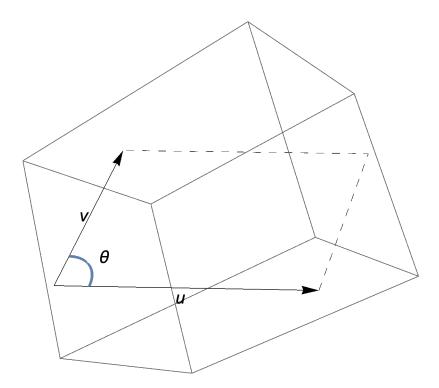
- If $\vec{u} \times \vec{v} = \vec{0}$, then its magnitude is 0. One of three things must be true.
 - $\vec{u} = \vec{0}$, or
 - $\overrightarrow{v} = \overrightarrow{0}$, or
 - $sin(\theta) = 0$ which means $\theta = 0$. The vectors must be parallel, pointing in the same direction or in the exact opposite direction.
- Place vectors \overrightarrow{u} and \overrightarrow{v} so their initial points are the same. They form two of the sides of a parallelogram. The area of a parallelogram is height × base.



The area of this parallelogram is

$$|\vec{u}| |\vec{v}| \sin(\theta) = |\vec{u} \times \vec{v}|$$

(in terms of the lengths of these vectors and the angle $\boldsymbol{\theta}$ between them).



Questions

- What is the area of the **parallelogram** formed from vectors $\vec{u} = \langle 2, -1, 3 \rangle$ and $\vec{v} = \langle 1, 2, 1 \rangle$? (<u>Video</u>)
- What is the area of the **triangle** with vertices (0, 1, 0), (2, -1, -1), (-1, 0, 1)? (Video)

Cross product algebraic properties

Question

How are $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ related? (The cross-product is non-**commutative!**)

Other properties

1.
$$(s\vec{a}) \times \vec{b} = s(\vec{a} \times \vec{b}) = \vec{a} \times (s\vec{b})$$
 (where s is a scalar)

2.
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

3.
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

Questions

■ Show property 2 is true by computing each side using

$$\vec{a} = \langle a_1, a_2, a_3 \rangle, \vec{b} = \langle b_1, b_2, b_3 \rangle, \vec{c} = \langle c_1, c_2, c_3 \rangle$$

■ Show that the cross-product is non-associative: that is, in general

$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}.$$

(Video)

• What is $\vec{k} \times (\vec{i} + 2\vec{j})$?

(Video)

• What is
$$\vec{a} \times \vec{b} = \left(a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} \right) \times \left(b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k} \right)$$
?

(Video)

Homework

■ IMath problems on cross products.