Inverse Functions

Related to Section 6.1 in Stewart, 8th edition

Overview

We need and use a number of different kinds of functions:

- Linear functions f(x) = mx + b are the simplest functions. We can approximate many of the simplest behavior with these "straight line" functions.
- Quadratic functions $f(x) = ax^2 + bx + c$ are useful to model things like the effects of gravity and shapes used in satellite dishes and headlights ("parabola" or "paraboloid").
- Polynomial functions are used to approximate complicated phenomena. For instance piecewise cubic polynomials ("splines") are used in drawing applications like Adobe Illustrator.
- Sinusoidal functions with sines and cosines model repeating ("periodic") phenomena.

Questions

Solve the following. (In these expressions *x* and *y* are called **variables**, whereas *a* and *b* are called **parameters**. Think of a parameter as an *unspecified yet fixed* number.)

- Solve the linear equation y = 3x + 5 = b for x. (Solution)
- Solve the quadratic equation $y = \frac{x^2}{2} b = 1$ for x. (Solution)
- Solve the cubic equation $y = 2x^3 3 = a$ for x. (Solution)
- Solve the sinusoidal equation $y = 2 \sin(x) = 1$ for x. (Solution)

What's troubling about the

- quadratic inverse problem?
- sinusoidal inverse problem?

Inverse functions

Inverse functions is a framework for solving equations. We have "obvious" methods for solving some of them, e.g.

- Use square roots to solve quadratic equations.
- Use cube roots to solve simple cubic equations.

Definition

Given a function f(x): if y = f(x) has exactly one solution x for any y in the range of f, then the inverse to fexists, and is denoted f^{-1} :

$$y = f(x) \longleftrightarrow f^{-1}(y) = x$$

We say that f is "one-to-one"; we pronounce " \longleftrightarrow " as "if and only if".

Example

The inverse function to $f(x) = 2x^3 - 3$ is $f^{-1}(y) = \sqrt[3]{\frac{y+3}{2}}$ or

$$f^{-1}(x) = \sqrt[3]{\frac{x+3}{2}}$$

Question

If
$$g(x) = \frac{x^2}{2} + 1$$
 find $g^{-1}(x)$, if it exists. (Solution)

Inverse function properties

- A function f is one-to-one if it never takes on the same value twice, i.e. $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$. One-to-one functions have exactly one inverse.
- A horizontal line can cross the graph of a one-to-one function at most once.

Question

Which is the graph of a one-to-one function? If it is not a one-to-one function, how can the domain be restricted to make a one-to-one function? (Solution)

Properties

- $f^{-1}(f(x)) = x$ for every x in the domain of f.
- $f(f^{-1}(y)) = y$ for every y in the domain of f^{-1} .
- The domain of f^{-1} is the same as the range of f, and the range of f^{-1} is the same as the domain of f.
- Since y = f(x) is the same as $f^{-1}(y) = x$, the graph $y = f^{-1}(x)$ is the same as the graph y = f(x) except xand y have been exchanged: i.e. the graph has been reflected about the line y = x.

Questions

Each question refers to the function in Plot 1:

- What is the graph of the inverse function? (Solution)
- What is the domain of the inverse function? (Solution)
- Estimate the value of the inverse function $f^{-1}(x)$ when x = 4. (Solution)

Calculus of inverses

Use the fact that $y = f^{-1}(x)$ is the same as f(y) = x, and implicit differentiation to find the derivative of $f^{-1}(x)$.

Example

We know what the derivative of $\sqrt[3]{x}$, but we can also get it from the cube function:

$$y = \sqrt[3]{x} \longrightarrow x = y^{3}$$

$$\longrightarrow \frac{d}{dx}(x) = \frac{d}{dx}(y^{3})$$

$$\longrightarrow 1 = 3y^{2} \frac{dy}{dx}$$

$$\longrightarrow \frac{dy}{dx} = \frac{1}{3y^{2}} = \frac{1}{3(\sqrt[3]{x})^{2}}$$

Question

Apply this reasoning to find a formula for $\frac{d}{dx} f^{-1}(x)$. (Solution)

Homework

■ IMath problems on inverse functions