Indeterminate Forms

Supporting materials

If you wish to get a different perspective on the notes below try either of the following textbook sections.

- Stewart's Calculus
 - Section 6.8: Indeterminate Forms and L'Hopital's Rule
- Boelkins/Austin/Schlicker's Active Calculus Section 2.8: Using Derivatives to Evaluate Limits

Review

Trigonometric functions, and their inverses:

Questions

- What is the domain and range of sin⁻¹(x)? Of tan⁻¹(x)? Of cos⁻¹(x)?
- When is an "identity" an identity?
 - What is $\tan(\tan^{-1}(0.3))$? What is $\tan^{-1}(\tan(\pi/4 + 2\pi))$?
 - What is cos⁻¹(cos(π/5))? What is cos⁻¹(cos(-π/5))?
 - What is sin(cos⁻¹(1/2))?

Right triangles

To find $tan(sin^{-1}(0.4))$, let $\theta = sin^{-1}(0.4)$ so that $0.4 = sin(\theta)$. Represent $sin(\theta)$ in a right triangle.

Using this triangle, $\tan(\sin^{-1}(0.4)) = \tan(\theta) = \frac{0.4}{\sqrt{1-0.4^2}} = \frac{0.4}{\sqrt{0.84}} \approx 0.436.$

Questions

Use a right triangle to find a formula for $sec(tan^{-1}(x))$.

Indeterminate forms

End behavior of functions requires that we deal with limits. An "end" may occur where $x \rightarrow \pm \infty$, or it may occur internally -- for instance, where there is a vertical asymptote.

Questions

- What is $\lim_{x\to 0} \frac{2x+1}{x-1}$?
- What is $\lim_{x\to 0} \frac{4x+1}{x}$?
- What is $\lim_{x\to 0} \frac{2x}{x}$?
- What is $\lim_{x\to 0} \frac{x}{5x}$?
- What is $\lim_{x\to\infty} \frac{x}{2}$?
- What is $\lim_{x\to\infty} \frac{1}{x}$?
- What is $\lim_{x\to\infty} \frac{x-1}{x+1}$?
- What is $\lim_{x\to\infty} \frac{x^2}{x}$?

Given a limit $\lim_{x\to a} f(x)$, if we can simply evaluate f(a) as the limit we say $\lim_{x\to a} f(x)$ is determinate. If we cannot simply evaluate f(x) at x = a, we say the limit is *indeterminate* -- it may or may not exist. Perhaps some algebra will help!

Indeterminate limits

- $\frac{0}{0}$, a small number divided by a small number -- hmm, could be anything. More work is needed.
- $\frac{\infty}{\infty}$, a large number divided by a large number could be anything. More work is needed.

The most important indeterminate form in calculus is undoubtedly the limit definition of the derivative, in either of its forms:

 $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ or $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

In the limit as $h \rightarrow 0$, the numerator goes to 0 and the denominator goes to 0; similarly as $x \rightarrow a$ in the second form of the limit definition.

L'Hôpital's rule

If you have a limit of a quotient which is either a $\frac{0}{0}$ or an $\frac{\infty}{\infty}$ limit, then the following is true if the limit (and the derivatives) exists:

 $\lim_{x \to a} \frac{q(x)}{h(x)} = \lim_{x \to a} \frac{q'(x)}{h'(x)}$

Warning: If the limit is not $\frac{0}{0}$ or $\frac{\infty}{\infty}$, the above two limits are not equal.

Example

To evaluate $\lim_{x\to\infty} \frac{x}{e^x}$, first notice that plugging in ∞ for x produces $\frac{\infty}{e^\infty} = \frac{\infty}{\infty}$. We can use L'Hôpital's rule: $\lim_{x\to\infty} \frac{x}{e^x} = \lim_{x\to\infty} \frac{(x)'}{(e^x)'} = \lim_{x\to\infty} \frac{1}{e^x} = 0$

Questions

Evaluate the following limits.

- $\lim_{x \to \infty} \frac{x}{\ln(x)}$ (Video)
- $\lim_{x\to\infty} \frac{\tan^{-1}(x)}{x^2+1}$ (<u>Video</u>)
- $\lim_{x \to 1} \frac{x^2 3x + 2}{\sin(x 1)}$ (Video)

•
$$\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$$
 (Video)

Why it works

For the $\frac{0}{0}$ case, this means f(a) = 0 and g(a) = 0. Remember the limit definition of the derivative

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$g'(a) = \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$
Since $f(a) = 0 = g(a)$
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$
$$= \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$
$$= \frac{f'(a)}{g'(a)}$$

Questions

Can we use L'Hôpital's rule on $\lim_{x\to 1} \frac{x-1}{e^{x-1}}$? Compare the actual value of this limit with the limit that comes from L'Hôpital's rule. (<u>Video</u>)

Other indeterminate forms

There are other indeterminate forms. Sometimes we can use L'Hôpital's rule to evaluate them *if* we can rewrite into either the $\frac{0}{0}$ or $\frac{\infty}{\infty}$ form.

Other forms

• $\infty - \infty$ or a large number minus a large number.

- 0·∞ or a number close to zero times a large number.
- Indeterminate powers
 - 0⁰ or a small number raised to another small number.
 - ∞⁰ or a large number raised to a small number.
 - 1[∞] or a number close to 1 raised to a large power.

Difference example

Evaluate $\lim_{x\to\infty} (\ln(2x+1) - \ln(3x-5))$. Use log properties to rewrite as a fraction. $\lim_{x\to\infty} (\ln(2x+1) - \ln(3x-5))$ $= \lim_{x\to\infty} \ln(\frac{2x+1}{3x-5})$ $= \ln(\lim_{x\to\infty} \frac{2x+1}{3x-5}) --$ (What allows us to do this?) = ?(Video)

(<u>viaco</u>)

Product example

Evaluate $\lim_{x\to\infty} x(\pi/2 - \tan^{-1}(x))$. Rewrite one of the factors as a fraction, factor = $\frac{1}{1/\text{factor}}$. $\lim_{x\to\infty} x(\pi/2 - \tan^{-1}(x)) = \lim_{x\to\infty} \frac{(\pi/2 - \tan^{-1}(x))}{1/x} = ?$ (Video)

Questions

- $\lim_{x\to\infty} x \sin\left(\frac{2}{x}\right) (\underline{\text{Video}})$
- $\blacksquare \lim_{x \to 0^+} x \ln(x) (\underline{\text{Video}})$

Power example

A limit that comes from finance is $\lim_{x\to\infty} \left(1 + \frac{r}{r}\right)^x$

Change the exponential expression to base *e* and take the limit of the exponent.

$$\lim_{x \to \infty} \left(1 + \frac{r}{x} \right)^x = \lim_{x \to \infty} e^{\ln\left(\left(1 + \frac{r}{x}\right)^x\right)} = \lim_{x \to \infty} e^{x \ln\left(1 + \frac{r}{x}\right)}$$
$$= e^{\lim_{x \to \infty} x \ln\left(1 + r/x\right)} = ?$$

Questions

Consider the function $g(x) = (x + e^x)^{1/x}$. It is defined on $(0, \infty)$.

- What is $\lim_{x\to 0^+} g(x)$?
- What is $\lim_{x\to\infty} g(x)$?

Homework

- IMath problems on indeterminate forms.
- Weekly Assignment #2 is also due.
- First exam is coming up. You've got a lot of IMath sets due this week. I hope that those are going fine. You can use late passes, if you must.