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Abstract

In this little note I use generating functions to find closed-form solutions to two
important recurrence relations (Fibonacci and Catalan numbers).

Rus May of Morehead State University loves generating functions more than anyone
I know – thanks for the enthusiasm Rus – it’s contagious!

1 Using Generating Functions

In this case we are using generating functions defined as series whose coefficients are terms
in sequences that any self-respecting mathematician would want to know. We’re looking for
formulas for Fibonacci and Catalan numbers in this brief note, so we’ll define

f(x) =
∞
∑

n=0

Fnx
n

and

c(x) =
∞
∑

n=0

Cnx
n,

where f will lead us to the Fibonacci numbers ({Fn}n∈IN+), and c will lead to the Catalan
numbers ({Cn}n∈IN+). Here N+ denotes the natural numbers plus 0 – the “whole” numbers.

The strategy: cleverly concoct relationships these functions satisfy, choosing the relationships
based on the recurrence relations which define each sequence. Once we have f and c as
functions of x, we expand those functions in power series, and identify coefficients – and
we’ll have our closed-form solutions.

2 Fibonacci Numbers

The Fibonacci numbers have a “celebrated” reputation in Mathematics: “2,3,5,8, who do
we appreciate? Fibonacci!” There’s even a song by the Jackson Five that celebrates them:
“Fibonacci – Easy as 1,1,2,3”. I’m sure I’ve heard it somewhere....

Fibonacci numbers are defined recursively, as










F0 = 1
F1 = 1

Fn+1 = Fn + Fn−1
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With f(x) =
∞
∑

n=0

Fnx
n, we write

f(x) = F0 +
∞
∑

n=1

Fnx
n

and

xf(x) = x
∞
∑

n=0

Fnx
n =

∞
∑

n=0

Fnx
n+1 =

∞
∑

n=1

Fn−1x
n

Therefore

f(x) + xf(x) = F0 +
∞
∑

n=1

(Fn + Fn−1)x
n = F0 +

∞
∑

n=1

Fn+1x
n

Let’s multiply through both sides by an x:

x(f(x) + xf(x)) = F0x+
∞
∑

n=1

Fn+1x
n+1

Recognizing that last term as most of f(x) (just missing the first few terms), we write

x(f(x) + xf(x)) = F0x+ (f(x)− (F0 + F1x)) = f(x)− F0 = f(x)− 1

Whew! That was a lot of work, but now we can solve for f(x): throwing all the f(x) stuff
to one side, we obtain

(x2 + x− 1)f(x) = −1

or

f(x) =
−1

x2 + x− 1
(1)

so long as x2 + x − 1 6= 0. The roots of this polynomial equation are r1 =
−1−

√
5

2
and

r2 =
−1 +

√
5

2
. If you’re familiar with the “golden mean”, γ =

1 +
√
5

2
, then you’ll notice

that r1 = −γ, and r2 =
1
γ
.

Now this is where the trick comes in: we expand the rational function in Eq. (1) as a
power series, and pick off the coefficients as the Fibonacci numbers. What a cool trick! First
up, though, is a partial fraction decomposition:

f(x) =
−1

(r1 − x)(r2 − x)
=

1√
5

( −1

r1 − x
+

1

r2 − x

)

(2)

and then we use series: since

1

1− x
= 1 + x+ x2 + x3 + . . . =

∞
∑

n=0

xn

we obtain
1

r − x
=

1

r

(

1

1− x
r

)

=
1

r
+

x

r2
+

x2

r3
+ . . . =

∞
∑

n=0

xn

rn+1
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we use this result twice in Eq. (2) to write

f(x) =
1√
5

∞
∑

n=0

(

−1

rn+1
1

+
1

rn+1
2

)

xn

We can do a little algebra (and use what we know about r1 and r2) to uglify the expression
a little – combining denominators, etc.:

f(x) =
∞
∑

n=0

(

−rn+1
2 + rn+1

1√
5(−1)n+1

)

xn =
∞
∑

n=0

(

−γ−(n+1) + (−γ)n+1

√
5(−1)n+1

)

xn

Finally, after all that, good lord, we can write

f(x) =
∞
∑

n=0

(

−(−γ)−(n+1) + γn+1

√
5

)

xn

so that the nth Fibonacci number Fn is given by

Fn =
γn+1 − (−γ)−(n+1)

√
5

It’s hard to believe that those are integers, but it’s true! Furthermore, since γ ≈ 1.618, the
second term becomes negligible as n gets big:

Fn ≈ γn+1

√
5

So, for example, F20 = 10946, and so is
γ21

√
5
(at least according to Mathematica). It’s not

quite 10946, since there’s a little error in there – but it’s not off by much:
−(−γ)−21

√
5

≈
0.0000182715.

In fact, if you’ll simply round the expression
γn+1

√
5
, it generates every Fibonacci number

correctly! Amazing....

Now, to be honest, I usually index my Fibonacci numbers from 1, so that F1 = F2 = 1,
and the rest is history. It’s easy to adjust our formulas, if you do too (and, in fact, they look
more elegant – which is actually important to mathematicians). We just shift n by 1:

Fn =
γn − (−γ)−n

√
5

(3)

and

Fn ≈ γn

√
5

One advantage of doing so is that when you continue backwards to −∞ with the Fibonacci
formula (Eq. (3) – and I don’t think Fibonacci ever did), you get a lovely symmetry:

n −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
Fn −8 5 −3 2 −1 1 0 1 1 2 3 5 8

That is, odd-indexed Fibonacci numbers are equal, whereas even-indexed Fibonaccis are
negatives of each other:

F−2n = −F2n

F−(2n+1) = F2n+1
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3 Catalan Numbers

I was inspired to write this little note by the following problem, which I chose for my
discrete math final exam, spring 2020 (and initially discovered at this website, from which
the following figure was taken):

Figure 1: I don’t know if the person who created this figure was being disingenuous, or just
careless – but it might have helped to emphasize the symmetry this problem possesses.

Problem: Given n ∈ IN, find Cn – the number of structurally unique binary search trees
that store values 1 through n. (For convenience I defined C0 = 1.) Figure 1 shows that
C3 = 5.

Using the same quaint graphing technique, but emphasizing the symmetry, we see that there
are five possible BSTs for n = 3:

1 1 2 3 3

\ \ / \ / /

3 2 1 3 2 1

/ \ / \

2 3 1 2

Or maybe this representation is more suggestive (with the n = 2 and n = 1 cases thrown in
for good measure):

1 1 2 3 3

\ \ / \ / /

3 2 1 3 2 1 2 1

/ \ / \ / \

2 3 1 2 1 2 1

Maybe then it is becomes clearer that

C3 = C0 ∗ C2 + C1 ∗ C1 + C2 ∗ C0

which I think of as (nothin’ to the left) * (two to the right) + (one to the left)*(one to
the right) + (two to the left)*(nothin’ to the right): so we multiply the number of ways of
arranging things to the left times the number of ways of arranging things to the right, and
so it goes....

For Cn we step from starting elements 1 to n, with successively more numbers of elements
to the left, and successively fewer elements to the right; the fractal nature of the Catalan
numbers appearing in successive figures (it’s perhaps easier to see the pattern if we add a
“0” element for this next case):
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0 | 1 | 2 | 3

\ | / \ | / \ | /

1 1 2 3 3 | 0 3 2 | 1 0 3 | 0 0 1 2 2

\ \ / \ / / | / \ | / \ | \ \ / \ / /

3 2 1 3 2 1 | 2 3 | 0 1 | 2 1 0 2 1 0

/ \ / \ | | | / \ / \

2 3 1 2 | | | 1 2 0 1

C4 = C0 ∗ C3 + C1 ∗ C2 + C2 ∗ C1 + C3 ∗ C0

After some considerations like these, of the recursive nature of the problem, I wrote down the
recurrence relation. Only later did I discover that Catalan numbers are defined recursively
in this same way:

{

C0 = 1
Cn+1 =

∑n
i=0 CiCn−i

With that recurrence relation in mind, we notice that if we square the generating function

c(x) =
∞
∑

n=0

Cnx
n, we get

c(x)2 =
∞
∑

i=0

Cix
i

∞
∑

j=0

Cjx
j =

∞
∑

i=0

∞
∑

j=0

CiCjx
i+j ;

then, for a given power n of x we should combine all the terms such that n = i+ j, and then
re-write the double sum as a single series (and use the recurrence relation to simplify):

c(x)2 =
∞
∑

n=0

(

n
∑

i=0

CiCn−i

)

xn =
∞
∑

n=0

(Cn+1) x
n.

Multiplying both sides by x, we get

xc(x)2 =
∞
∑

n=0

Cn+1x
n+1 =

∞
∑

n=1

Cnx
n = c(x)− C0 = c(x)− 1

Zut, alors! We’ve discovered that

xc(x)2 − c(x) + 1 = 0.

We can solve this simple quadratic equation for c(x), to obtain

c(x) =
1±

√
1− 4x

2x

and we seek to write c(x) as a power series. However, it’s simpler to find a power series for

2xc(x) = 1±
√
1− 4x

In the limit as x → 0, we must have c(x) = C0 = 1. Only the choice of the minus sign
admits this limit, so we can pitch the plus, and need only consider the form

2xc(x) = 1−
√
1− 4x.
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We use the generalized binomial theorem to write the power series on the right: starting
from

√
1 + x = (1 + x)

1

2 = 1 +
1

1!

1

2
x+

1

2!

1

2

(

1

2
− 1

)

x2 +
1

3!

1

2

(

1

2
− 1

)(

1

2
− 2

)

x3 + . . . ,

or √
1 + x =

∞
∑

n=0

1

n!

1

2

(

1

2
− 1

)

. . .

(

1

2
− (n− 1)

)

xn ≡
∞
∑

n=0

(

1
2

n

)

xn,

we write our particular expression as

√
1− 4x =

∞
∑

n=0

(−4)n
(

1
2

n

)

xn ≡
∞
∑

n=0

snx
n

(and define the coefficients sn at the same time). We note that

sn = (−4)n
(

1
2

n

)

= (−4)n
1

n!

1

2

(

1

2
− 1

)

. . .

(

1

2
− (n− 1)

)

=
(−2)n

n!
(1−0) (1− 2) . . . (1− 2(n− 1))

There are n terms in the product, but only n− 1 of them are negative. Hence

sn =
(−2)n

n!
(1(−1)(−3) . . . (3− 2n)) = −2n

n!
(1 · 3 · 5 · · · (2n− 5) · (2n− 3))

We now introduce some terms to create factorials, multiplying by the appropriate form of
1 (my favorite trick, as all my students know – unless it’s adding the appropriate form of
zero....):

sn = −2n

n!

(1)2(3)4 · · · (2(n− 2))(2n− 3)(2(n− 1))(2n− 1)2n

2n−2(n− 2)!(2(n− 1))(2n− 1)2n

That is,

sn = −2n

n!

(2n)!

2nn!(2n− 1)

or, in one penultimate frickin’ summary,

sn = − 1

n!

(2n)!

n!(2n− 1)

Therefore – and I say this with a sense of exhaustion and relief –

sn = − (2n)!

n!n!(2n− 1)
= − 1

2n− 1

(

2n
n

)

But, if you can believe it, we’re not done. Now we have to solve

2xc(x) = 1−
√
1− 4x = 1−

∞
∑

n=0

snx
n = 1−

∞
∑

n=0

− 1

2n− 1

(

2n
n

)

xn

for c(x). The good news is that the 0th term of the sum cancels the 1, so that we have

2xc(x) =
∞
∑

n=1

1

2n− 1

(

2n
n

)

xn
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and when we divide by 2x, we obtain

c(x) =
∞
∑

n=1

1

4n− 2

(

2n
n

)

xn−1

So stepping down the index by 1, we get

c(x) =
∞
∑

n=0

1

4(n+ 1)− 2

(

2(n+ 1)
(n+ 1)

)

xn.

Therefore, we conclude that

Cn =
1

4(n+ 1)− 2

(

2(n+ 1)
(n+ 1)

)

It seems like the moment when one should celebrate with a cold, refreshing adult beverage.
Sadly, however, that’s not the answer I was supposed to get! Wikipedia tells me that the
Catalan numbers are given by

Cn =
1

n+ 1

(

2n
n

)

But you know what? One of the things I love the most about mathematics is that there’s
always more than one way to do things, and the fact of the matter is that these expressions
are equal!

To see that, let’s start with my uglier expression:

Cn =
1

4(n+ 1)− 2

(

2(n+ 1)
(n+ 1)

)

=
(2(n+ 1))!

(n+ 1)!(n+ 1)!(4(n+ 1− 2)

So

Cn =
(2(n+ 1))(2n+ 1)2n · · · (n+ 2)

(n+ 1)n!2(2(n+ 1)− 1)
=

(2(n+ 1))(2n+ 1)2n · · · (n+ 2)

n!2(n+ 1)(2n+ 1)

and finally – finally, really truly –

Cn =
2n · · · (n+ 2)

n!
=

2n · · · (n+ 2)(n+ 1)

n!(n+ 1)
=

2n · · · (n+ 2)(n+ 1)n!

n!n!(n+ 1)
=

1

n+ 1

(

2n
n

)

Repeat:

Cn =
1

n+ 1

(

2n
n

)

of which the first few values are

{1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .}

Gloria in Excelsis Deo! (If there’s one thing for certain, it’s that God speaks Fibonacci, and
Catalan....)

Amen.
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