2GR Prove that in the Fibonacci sequence
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Other mathematical properties of the Fibonacci sequence are given
Example 3 and in the exercises at the end of this section. But it’s not on
mathematicians who are interested in the Fibonacci sequence. Fibonacci nun

bers often occur in nature. The number of petals on a daisy is often a Fibonac:
number. Viewing a pine cone from its base, the seeds appear to be arranged =

clockwise and counterclockwise spirals. Counting the number of each kind
spiral often gives two consecutive Fibonacci numbers (here 8 and 13). The same
true for seeds in flowers such as sunflowers. or for spirals on pineapples.

And in the worlds of art and architecture, the golden ratio is thought to creats

aesthetically pleasing proportions. The golden ratio is

1 +V5
1+V5 1.6180339
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and is the value approached by the ratio of two consecutive Fibonacci numbers

F(n + 1)/F(n) for larger and larger values of ».

F(n+4)=3Fn+2) - F(n) foralln = 1

Because we want to prove something true for all #» = 1, it is natural to think
of a proof by induction. And because the value of Fi () depends on both F(n — 1
and F(n — 2), the second principle of induction should be used. For the basis step
of the inductive proof, we’ll prove two cases,n = 1 andn = 2. Forn = 1, by sub-
stituting 1 for 7 in the equation we want to prove, we get

F(3) = 3A(3) - F(1)
or (using values computed in Practice 2)
5=32)-1

which is true. Forn = 2,

F(6) = 3F(4) — F(2)
or

8 =3(3) — 1

which is also true. Assume that for all il ==k

F(r + 4) = 3F(r + 2) — F(r).




Now show the case for k + 1, where k + 1 = 3. (We’ve already proved the

case for # = 1 and the case for » = 2.) Thus we want to show

or

2

Fk+1+4)=3Fk+1+2)—Fk+1)

Flk +5) £ 3F(k +3)— Flk+ 1)

From the recurrence relation for the Fibonacci sequence, we have

Fk+5=Fk+3)+Fk+4

(F at any value is the sum of F at
the two previous values)

and by the inductive hypothesis, with r =k — 1 and r = k, respectively,

and

Therefore

F(k + 5)

Flk+3)=3Fk+1)— Fk—1)

F(k + 4) = 3F(k + 2) — F(k)

F(k + 3) + F(k + 4)

[3F(k + 1) — F(k — 1)] + [3F(k + 2) — F(b)]
3[F(k + 1) + F(k + 2)] — [Fk — 1) + F(k)]

3F(k +3) — F(k + 1)

This completes the inductive proof.

of Example 3 can also be proved without induction, using just the recurrence rela-

=8 The formula

(using the recurrence relation again)

F(n + 4) =3F(n + 2) — F(n) foralln = 1

tion from the definition of Fibonacci numbers. The recurrence relation

F(n+2)=Fn) + Fn+1)

can be rewritten as

F(n + 1) = Fn+ 2) — F(n)
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Then

Fn+4)=F@n+3)+ Fn+ 2)

=Hn+ L)+ Hnt1) + Hp+2) (rewriting F(n + 3
=Fn+2)+[Fn+2)— Fn)] + Fin + 2) (rewriting F(n +
using (1))

= 3F(n+2). = Fn)

The objects in a sequence are ordered—there is a first object, a second object, ar
so on. A set of objects is a collection of objects on which no ordering is imposec
Some sets can be defined recursively.

¥ In Section 1.1 we noted that certain strings of statement letters, logical connec-
tives, and parentheses, such as (4 A B)' \V C, are considered legitimate, whils
other strings, such as A\ /A 4''B, are not legitimate. The syntax for arranging suc

symbols constitutes the definition of the set of propositional well-formed formulas
and it is a recursive definition.

1. Any statement letter is a wif.
2. If Pand Q are wffs, so are (P A\ Q), (P Q), (P — 0), (P')and (P« Q)

Using the rules of precedence for logical connectives established in Section 1.1
we can omit parentheses when doing so causes no confusion. Thus we write
(PV Q)as PV Q, or (P') as P'; the new expressions are technically not wifs b
the definition just given, but they unambiguously represent wifs.

By beginning with statement letters and repeatedly using rule 2, any proposi-
tional wif can be built. For example, 4, B, and C are all wffs by rule 1. By rule 2.

(4 N\ B) and (C")
are both wffs. By rule 2 again,
(AN B)—(C)
is a wif. Applying rule 2 yet again, we get the wff
(4 AB)—(C")))
Eliminating some pairs of parentheses, we can write this wff as

(AN B)— C' P

*Sometimes there is a final rule added to the effect that there are no applicable rules besides those alreads
given, which means that if something can’t be generated using the rules already given, then it does not belong

to the set being described. We’ll assume that when we stop writing rules, there are no more applicable rules
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Shm\;hm\' to build the wif (4 \V (B")) — O) ﬁ'm}] Ehc: definition in Example 5.

A recursive definition for the set of people who are ancestors of James could have the
following basis:

James’s parents are ancestors of James.

Give the inductive step.

Strings of symbols drawn from a finite “alphabet™ set are objects that are
commonly encountered in computer science. Computers store data as binary
strings, strings from the alphabet consisting of Os and 1s; compilers view program
statements as strings of tokens, such as key words and identifiers. The collection
of all finite-length strings of symbols from an alphabet, usually called strings over
an alphabet, can be defined recursively (see Example 6). Many sets of strings with
special properties also have recursive definitions.

The set of all (finite-length) strings of symbols over a finite alphabet 4 is denoted
by A*. The recursive definition of 4* is

1. The empty string \ (the string with no symbols) belongs to A*.
2. Any single member of 4 belongs to 4*.
3. Ifx and y are strings in A4*, s0 is xy, the concatenation of strings x and y.

Parts 1 and 2 constitute the basis, and part 3 is the recursive step of this definition.
Note that for any string x, xA = Ax = x. -

[fx = 1011 and y = 001, write the strings xy, yx, and yx\x.

Give a recursive definition for the set of all binary strings that are palindromes, strings
that read the same forward and backward.

Suppose that in a certain programming language, identifiers can be alphanumeric
strings of arbitrary length but must begin with a letter. A recursive definition for the
set of such strings is

1. Asingle letter is an identifier.

2. If A is an identifier, so is the concatenation of 4 and any letter or digit.
A more symbolic notation for describing sets of strings that are recursively
defined is called Backus—Naur form, or BNF, originally developed to define the




