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Abstract

By analysis of algorithms we mean the study of the ef-
ficiency of the algorithms. In this section we will measure the
efficiency of an algorithm by counting operations (and of course
we are generally shooting for a small number, in our endless
pursuit of optimization).

1 Counting operations directly

In algorithm SequentialSearch (p. 204), we search for element x in a list
of n items. SequentialSearch is a direct method, by comparison with
algorithm BinarySearch (p. 169), which is recursive. Is one algorithm
more efficient than the other?

In the SequentialSearch, there are three rather interesting cases:

• we find x on the very first try (total comparisons: 1). This is
called the “best-case” scenario.

• we find (or even don’t find – it doesn’t matter in terms of op-
erations) x on the last try (total comparisons: n). This is the
“worst-case” scenario.

• If x is in the list, then on average we require (n+1)/2 comparisons
(remembering Gauss): we sum up all the cases from 1 to n, and
divide by n:
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We will consider the worst-case scenario as the benchmark: best be-
havior is great, and average behavior is okay; but if we throw our user
into infinite loops (for example) in the worst case, we’re really doing a
disservice....



Sometimes we can compute exactly how many operations will be re-
quired – e.g. our recursive calculation of Fibonacci(n) using the re-
cursive definition. Let’s count how many additions A(n) are required
for the calculation of Fib(n) by the recursive algorithm. (The result is
somewhat amusing!)

The recurrence relation for A(n) is non-homogeneous, but can be con-
verted to a homogeneous linear recurrence, where its form is well known.
This is a standard trick in mathematics: convert a problem into another
that you know how to do, and then convert back.

It turns out that the closed form solution for the nth Fibonacci is
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is known as “the golden mean” (or “golden ratio”). It

turns out, however, that Fn ≈ γn

√

5
, and that every Fibonacci Fn can be

obtained by simply rounding this expression!
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for all n ∈ IN. That’s amazing, and demonstrates that Fibonacci num-
bers grow exponentially (within a unit of the exponential function γn

√

5
).

More on Fibonacci numbers in a bit.

The BinarySearch algorithm starts with a sorted list, which is not a
requirement for the SequentialSearch algorithm; so the comparison isn’t
really fair. What if we add a sort?



Example: #19, p. 215

Example: #20, p. 215

Example: #21, p. 215

Example: #22, p. 215

http://www.nku.edu/~longa/classes/mat385/days/problems/2.5/2.5.html#Exercise13
http://www.nku.edu/~longa/classes/mat385/days/problems/2.5/2.5.html#Exercise14
http://www.nku.edu/~longa/classes/mat385/days/problems/2.5/2.5.html#Exercise15
http://www.nku.edu/~longa/classes/mat385/days/problems/2.5/2.5.html#Exercise16


So we can carry out the BinarySearch algorithm following a MergeSort

(see the exercises above for its definition), with

n(log2(n) − 1) + 1

operations (in the worst case), compared with n operations for Sequen-

tialSearch - which wins in this case! nlog2(n) is superlinear - grows
faster than the linear function n.

If we had started with a sorted list, however, it would make no sense
to use SequentialSearch, since BinarySearch is so much more efficient
in that case.

Also, if we are doing multiple searches with the same lists, then the
costs of not sorting begin to add up. The sorting is an initial (or
fixed) cost; then there is a benefit each time one sorts thereafter for
the merge-sort. It would be wise to compute the cut-off value of the
number of searches for a given list size which would justify sorting and
then using the binary search algorithm.

2 Other criteria

An algorithm should not be analyzed quite so one-dimensionally as
we’ve done here, of course: there may be other issues (such as how easily
parallelized an algorithm is, for example) which are more important
than simple operation counts. In the case of searching, are we going to
be reusing the list and doing the searches over and over? The sort is a
one-time cost, while the searching is not.

We may simply be shooting for an upper bound on the number of
operations required (even worse than the worst case scenario!), when
actual worst-case numbers are hard to come by. This is demonstrated
in the case of the Euclidean Algorithm (for computing the greatest
common divisor, or gcd) in this section (the Euclidean Algorithm is
first introduced on p. 133).

Here is a recursive definition for the Euclidean Algorithm, in lisp:

http://www.nku.edu/~longa/classes/mat385_resources/lsp/index.html#gcd


(defun

ourgcd(a b &key initial-a initial-b )

(if (not (and (integerp a) (integerp b)))

(error "Sorry: only integer arguments allowed.")

)

(let* ((a (abs a))

(b (abs b))

(m (min a b))

(n (max a b))

(r (mod n m))

(q (floor (/ n m))) ;; only needed to print out the equation used

;; These just store the original values of a and b for printing in the end:

(initial-a (if initial-a initial-a n))

(initial-b (if initial-b initial-b m))

)

;; print out the current equation from the division algorithm:

(format t "~%~d=~d*~d+~d" n q m r)

(if (= r 0)

;; we have no remainder, so we’re finished: print out the result (the gcd)

(format t "~%gcd(~d,~d)=~d" initial-a initial-b m)

;; otherwise, iterate:

(ourgcd m r :initial-a initial-a :initial-b initial-b)

)

)

)

Actually, in this case, worst-case numbers are easy to get: the worst
case for the Euclidean algorithm is a pair of consecutive Fibonacci
numbers (there they are again, those rascals!). This is investigated in
problems #37-40, p. 217. An example pair of consecutive Fibonacci
numbers would be 5 and 3, or 89 and 55.

Our author shows (p. 210) that the number of divisions required
satisfies the (rather poor) upper bound

E(n) ≤ 2 log2(n)

where n is the larger integer in the pair gcd(n, m).
Let’s see where this comes from: given the need to compute the

greatest common divisor of a and b, a ≥ b, we compute gcd(a, b) starting
with

a = q1b + r1

and then “do it again” (recurse) – we compute

b = q2r1 + r2

and do so until rm = 0 (at which point rm−1 would be the gcd). In
this case, the index on r is a count of the number of divisions required
(starting from the first of b into a, which resulted in r1).

Now r1, the remainder of dividing a by b, satisfies r1 < b (or we’d
take out another factor of b).



Consider all possible cases (we show that r1 <
a

2
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2
(and we’re done, by the way! That’s

not worst-case analysis....).

Now if we successfully compute the two steps of the Euclidean algo-
rithm, then we will have reduced our problem to the calculation of
gcd(r1, r2).

Since r1 <
a

2
, we’ve “halved” the problem. So here’s the resultant

worst-case scenario recurrence relation (as usual for divide and conquer,
let’s suppose that n = 2k for some k ∈ IN):

E(1) = 0
E(n) = E(n/2) + 2, for n ≥ 1

Plugging E(1) = 0, c = 1, and g(n) = 2 into this formula from section
2.5,
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we get the desired result:
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or
E(n) ≤ 2 log2(n).
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