
Section 7.3: Details of the Shortest

Path Algorithms

April 14, 2022

Abstract

Some examples are provided in gory detail.

1 Shortest Path Algorithms

1.1 Dijkstra’s Algorithm

Example: #3, p. 591

We start with the adjacency matrix:































∞ 3 5 ∞ 8 1 ∞ ∞
3 ∞ 2 ∞ ∞ ∞ 1 ∞
5 2 ∞ 1 ∞ ∞ ∞ 2
∞ ∞ 1 ∞ 4 ∞ ∞ ∞
8 ∞ ∞ 4 ∞ 6 ∞ 1
1 ∞ ∞ ∞ 6 ∞ 5 ∞
∞ 1 ∞ ∞ ∞ 5 ∞ 1
∞ ∞ 2 ∞ 1 ∞ 1 ∞































The adjacency matrix serves to indicate to the computer which nodes
are adjacent to which others.

Now, we’re going to keep track of the “settled nodes”, starting with
the initial node (IN = {1}). We will also keep track of their distances
to node 1, and we’ll keep a list of their nearest neighbor along their
shortest path back to 1. They start this way, therefore:

1 2 3 4 5 6 7 8
d 0 3 5 ∞ 8 1 ∞ ∞
s − 1 1 1 1 1 1 1

Note that once a node is settled, its entries won’t be changing.



The next closest node is 6: it is one unit away from 1. Any other node
must be further away, as to go directly from 1 requires more than 1
unit, and passing by node 6 would still be farther than one unit (one
unit and change). Hence 6 is added to IN = {1, 6}, and

1 2 3 4 5 6 7 8
d 0 3 5 ∞ 8 1 ∞ ∞
s − 1 1 1 1 1 1 1

Since node 6 has neighbors {1, 5, 7}, these are the only nodes whose
distances could be updated. Node 1 will not change, however, as it is
already settled in for its long winter’s nap. Looking the others over, we
see that there are some improvements to both 5 and 7:

1 2 3 4 5 6 7 8
d 0 3 5 ∞ 7 1 6 ∞
s − 1 1 1 6 1 6 1

We now settle 2, with neighbors {1, 3, 7}, of which only 3 and 7 can
change:

1 2 3 4 5 6 7 8
d 0 3 5 ∞ 7 1 4 ∞
s − 1 1 1 6 1 2 1

Node 3 sticks, but 7 can be reached in only 4. This makes it our next
settled node, with neighbors {2, 6, 8}: only 8 can still change! And it
does:

1 2 3 4 5 6 7 8
d 0 3 5 ∞ 7 1 4 5
s − 1 1 1 6 1 2 7

We now take 3 as our next settled node, although the choice is arbitrary
(both 3 and 8 are at distance 5). Node 3 has neighbors {1, 2, 4, 8}, so
only 4 and 8 can change (and only 4 does):

1 2 3 4 5 6 7 8

d 0 3 5 6 7 1 4 5
s − 1 1 3 6 1 2 7

Now node 8 is settled, whose neighbors are {3, 5, 7}. Only 5 can change,
and it does:

1 2 3 4 5 6 7 8

d 0 3 5 6 6 1 4 5
s − 1 1 3 8 1 2 7

Now, if our algorithm is smart, it will decide ties in favor of the desti-
nation node. So let’s assume a smart algorithm: then the next settled
node will be node 5, our final destination. The arrays end, then, as

1 2 3 4 5 6 7 8

d 0 3 5 6 6 1 4 5
s − 1 1 3 8 1 2 7



which indicates that the shortest path between nodes 1 and 5 has weight
or cost 6, and the path is given by the s array: 5’s adjacent neighbor
on the path to 1 is 8; 8’s is 7; 7’s is 2; and 2’s is 1. Hence a shortest
path is

5− > 8− > 7− > 2− > 1

(note that the shortest path may not be unique: hence we say “a”
rather than “the”).

1.2 Bellman-Ford Algorithm

This algorithm allows us to find the shortest distance from the initial
node to all other nodes, and is hence a generalization of Dijkstra’s
algorithm (at least as presented in our book).

We’re going to compute shortest paths of 1 arc, 2 arcs, ..., (n-1) arcs,
which are the longest paths we would possibly use to get to any node
from 1 (otherwise we would be visiting a node twice, which would be
foolish!).

Example: #12, p. 593

Fortunately we’re using the same graph, so the adjacency matrix is
essentially the same. We start with the adjacency matrix































0 3 5 ∞ 8 1 ∞ ∞
3 0 2 ∞ ∞ ∞ 1 ∞
5 2 0 1 ∞ ∞ ∞ 2
∞ ∞ 1 0 4 ∞ ∞ ∞
8 ∞ ∞ 4 0 6 ∞ 1
1 ∞ ∞ ∞ 6 0 5 ∞
∞ 1 ∞ ∞ ∞ 5 0 1
∞ ∞ 2 ∞ 1 ∞ 1 0































with zeros down the diagonal in place of the infinities before.

We essentially add each row of the adjacency matrix to the current d
vector, and check to see if we get any improvement. If so, we’ve found a
shorter path! d contains the shortest distances determined so far from
the initial node to every node in the graph.

Once again we’re going to keep track of the distances from the initial
node, starting with the initial node 1. We will also keep track of their
nearest neighbor along their shortest path back to 1. They start this
way, therefore:

1 2 3 4 5 6 7 8
d 0 3 5 ∞ 8 1 ∞ ∞
s − 1 1 1 1 1 1 1



Only when a node changes will it impact other nodes. We now ask
about paths using two arcs: what are the shortest distances for each
node from node 1? In order to answer this question, you need to exam-
ine each node’s neighbors (use the adjacency matrix!), and check their
nearest distances. Again, if these neighbor distances have not changed
from one step to the next, then the distance to the given node will not
change either!

At the second iteration, paths of two arcs, our distances look like this:

1 2 3 4 5 6 7 8
d 0 3 5 6 7 1 4 7
s − 1 1 3 6 1 2 3

For example, if we add the fourth node’s row of the adjacency matrix
to the original d array, we get

1 2 3 4 5 6 7 8
d+ fourth ∞ ∞ 6 ∞ 12 ∞ ∞ ∞

which says that we can get to node 4 in 6, using node 3. We do the
same for all the other nodes (other rows of the adjacency matrix).

Iterate: we again step through the rows, checking the neighbors of
each node against their newly calculated values to see if there’s any
improvement. Only for node 8 do we see any change:

1 2 3 4 5 6 7 8
d 0 3 5 6 7 1 4 5
s − 1 1 3 6 1 2 7

Node 8’s only neighbors are {3, 5, 7}, so only these can change in the
next step: we use their rows from the adjacency matrix, and try again:

1 2 3 4 5 6 7 8
d 0 3 5 6 6 1 4 5
s − 1 1 3 8 1 2 7

Only 5 changed. Its neighbors are {1, 4, 7, 8}, but none of them change.
Hence we are done! There can be no further change.

The d array gives us the nearest distances to 1 for each node, and their
paths can be calculated exactly as for Dijkstra’s algorithm.



1.3 Floyd’s Algorithm

Example: #15, p. 594

The output below, from an implementation in lisp that assumes

undirected graphs, shows the distances above the diagonal, and the
original adjacency matrix below the diagonal (we may as well use the
storage to illustrate the changes!). So I would run this version of the
algorithm if we detect that the adjacency matrix is symmetric (which
it is for this graph of #15).

Table 1: Initial adjacency matrix

0 1 ∞ 4 ∞
1 0 3 1 5
∞ 3 0 2 2
4 1 2 0 3
∞ 5 2 3 0

Table 2: After the sweep with k=0 (for x - by indexing from 0, we’ll
have k line up with the node label for the rest of our iterations).

0 1 ∞ 4 ∞
1 0 3 1 5
∞ 3 0 2 2
4 1 2 0 3
∞ 5 2 3 0

Table 3: After the sweep with k=1

0 1 4 2 6
1 0 3 1 5
∞ 3 0 2 2
4 1 2 0 3
∞ 5 2 3 0

Table 4: After the sweep with k=2

0 1 4 2 6
1 0 3 1 5
∞ 3 0 2 2
4 1 2 0 3
∞ 5 2 3 0



Table 5: After the sweep with k=3

0 1 4 2 5
1 0 3 1 4
∞ 3 0 2 2
4 1 2 0 3
∞ 5 2 3 0

Table 6: End matrix, after the sweep with k=4 (for y), with the shortest
distances above the diagonal, and the original adjacency values below
the diagonal.

0 1 4 2 5
1 0 3 1 4
∞ 3 0 2 2
4 1 2 0 3
∞ 5 2 3 0


	Shortest Path Algorithms
	Dijkstra's Algorithm
	Bellman-Ford Algorithm
	Floyd's Algorithm


