
Section 7.4: Traversal Algorithms

April 14, 2022

Abstract

We’ve already examined some tree traversal algorithms (pre-
order, in-order, post-order), and considered their relative advan-
tages. We now want to open the notion of traversal to all sim-
ple, connected graphs (we certainly might want to write out the
nodes of an arbitrary graph!). We examine and compare two re-
cursive methods: depth-first and breadth-first graph traversals.
In the end, we’ll see how they work on trees, and how they relate
to those algorithms. In a sense, we’re creating a tree by writing
out the nodes of a graph without repeats (without cycling).

Note: we’re only covering 7.4 through Practice 16 (p. 602).

Important Convention: for the problems, we should stick
with the convention that, given a choice, we should choose nodes
in alphabetic order. This assures that we all end up with the
same answer, which maximizes sanity....

1 Depth-First versus Breadth-First Traver-

sal

1.1 Depth-First

The idea behind the depth-first strategy is to burrow down into the
graph, rather than spread out as one will in a breadth-first traversal.
The depth-first algorithm is recursive. Have a look at the algorithm on
p. 597.

a. Pick (mark and write) the start node;

b. Find its neighbor nodes (ordering them lexigraphically, again for
sanity’s sake!);

c. For each unmarked neighbor x, DepthFirst(G,x)

Figure 1: Practice 14, p. 598. Write the nodes in a depth-first search
beginning from node a.

Figure 2: Exercise #1, p. 604. Like Practice 14, start at a. (Graph for
Exercises 1-6, p. 604)

1.2 Breadth-First

Examine the breadth-first algorithm on p. 599. It uses a queue to tra-
verse the nodes, popping elements off the queue as all of their adjacent
nodes are also marked.

a. Pick (mark, write, and enqueue) the start node; then, while the
queue is non-empty,

b. Find the front-of-the-queue’s neighbor nodes (ordering them lex-
igraphically to be kind);

c. Mark, write, and enqueue those which are as yet unmarked;

d. Dequeue the front element of the queue;

e. Continue until the queue is empty.

Example: #11, p. 605 (start at node a.)

Figure 3: Graph for Exercises 1-6, p. 604

2 How do these graph traversal algorithms

behave for trees?

Let’s look at an example: the tree of Figure 6.46, p. 517.

Figure 4: Figure 6.46, p. 517

• Depth-first equates to preordering;

• Breadth-first does just what you’d expect! From the root on
down, by depth.

	Depth-First versus Breadth-First Traversal
	Depth-First
	Breadth-First

	How do these graph traversal algorithms behave for trees?

